Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 11(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36918221

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapies have demonstrated transformational outcomes in the treatment of B-cell malignancies, but their widespread use is hindered by technical and logistical challenges associated with ex vivo cell manufacturing. To overcome these challenges, we developed VivoVec, a lentiviral vector-based platform for in vivo engineering of T cells. UB-VV100, a VivoVec clinical candidate for the treatment of B-cell malignancies, displays an anti-CD3 single-chain variable fragment (scFv) on the surface and delivers a genetic payload that encodes a second-generation CD19-targeted CAR along with a rapamycin-activated cytokine receptor (RACR) system designed to overcome the need for lymphodepleting chemotherapy in supporting successful CAR T-cell expansion and persistence. In the presence of exogenous rapamycin, non-transduced immune cells are suppressed, while the RACR system in transduced cells converts rapamycin binding to an interleukin (IL)-2/IL-15 signal to promote proliferation. METHODS: UB-VV100 was administered to peripheral blood mononuclear cells (PBMCs) from healthy donors and from patients with B-cell malignancy without additional stimulation. Cultures were assessed for CAR T-cell transduction and function. Biodistribution was evaluated in CD34-humanized mice and in canines. In vivo efficacy was evaluated against normal B cells in CD34-humanized mice and against systemic tumor xenografts in PBMC-humanized mice. RESULTS: In vitro, administration of UB-VV100 resulted in dose-dependent and anti-CD3 scFv-dependent T-cell activation and CAR T-cell transduction. The resulting CAR T cells exhibited selective expansion in rapamycin and antigen-dependent activity against malignant B-cell targets. In humanized mouse and canine studies, UB-VV100 demonstrated a favorable biodistribution profile, with transduction events limited to the immune compartment after intranodal or intraperitoneal administration. Administration of UB-VV100 to humanized mice engrafted with B-cell tumors resulted in CAR T-cell transduction, expansion, and elimination of systemic malignancy. CONCLUSIONS: These findings demonstrate that UB-VV100 generates functional CAR T cells in vivo, which could expand patient access to CAR T technology in both hematological and solid tumors without the need for ex vivo cell manufacturing.


Asunto(s)
Receptores Quiméricos de Antígenos , Linfocitos T , Humanos , Animales , Perros , Ratones , Receptores Quiméricos de Antígenos/genética , Receptores de Antígenos de Linfocitos T , Leucocitos Mononucleares , Distribución Tisular , Ingeniería Celular/métodos
2.
Proc Natl Acad Sci U S A ; 119(22): e2200568119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35588144

RESUMEN

Cyclic dinucleotides (CDN) and Toll-like receptor (TLR) ligands mobilize antitumor responses by natural killer (NK) cells and T cells, potentially serving as complementary therapies to immune checkpoint therapy. In the clinic thus far, however, CDN therapy targeting stimulator of interferon genes (STING) protein has yielded mixed results, perhaps because it initiates responses potently but does not provide signals to sustain activation and proliferation of activated cytotoxic lymphocytes. To improve efficacy, we combined CDN with a half life-extended interleukin-2 (IL-2) superkine, H9-MSA (mouse serum albumin). CDN/H9-MSA therapy induced dramatic long-term remissions of the most difficult to treat major histocompatibility complex class I (MHC I)­deficient and MHC I+ tumor transplant models. H9-MSA combined with CpG oligonucleotide also induced potent responses. Mechanistically, tumor elimination required CD8 T cells and not NK cells in the case of MHC I+ tumors and NK cells but not CD8 T cells in the case of MHC-deficient tumors. Furthermore, combination therapy resulted in more prolonged and more intense NK cell activation, cytotoxicity, and expression of cytotoxic effector molecules in comparison with monotherapy. Remarkably, in a primary autochthonous sarcoma model that is refractory to PD-1 checkpoint therapy, the combination of CDN/H9-MSA with checkpoint therapy yielded long-term remissions in the majority of the animals, mediated by T cells and NK cells. This combination therapy has the potential to activate responses in tumors resistant to current therapies and prevent MHC I loss accompanying acquired resistance of tumors to checkpoint therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Antígenos de Histocompatibilidad Clase I , Inmunoterapia , Interleucina-2 , Proteínas de la Membrana , Neoplasias , Nucleótidos Cíclicos , Oligodesoxirribonucleótidos , Albúmina Sérica , Animales , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inmunoterapia/métodos , Interleucina-2/inmunología , Células Asesinas Naturales/inmunología , Proteínas de la Membrana/agonistas , Ratones , Neoplasias/genética , Neoplasias/terapia , Nucleótidos Cíclicos/uso terapéutico , Oligodesoxirribonucleótidos/uso terapéutico , Albúmina Sérica/uso terapéutico
3.
Dev Cell ; 56(19): 2712-2721.e4, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34496290

RESUMEN

Cancer patients often die from symptoms that manifest at a distance from any tumor. Mechanisms underlying these systemic physiological perturbations, called paraneoplastic syndromes, may benefit from investigation in non-mammalian systems. Using a non-metastatic Drosophila adult model, we find that malignant-tumor-produced cytokines drive widespread host activation of JAK-STAT signaling and cause premature lethality. STAT activity is particularly high in cells of the blood-brain barrier (BBB), where it induces aberrant BBB permeability. Remarkably, inhibiting STAT in the BBB not only rescues barrier function but also extends the lifespan of tumor-bearing hosts. We identify BBB damage in other pathological conditions that cause elevated inflammatory signaling, including obesity and infection, where BBB permeability also regulates host survival. IL-6-dependent BBB dysfunction is further seen in a mouse tumor model, and it again promotes host morbidity. Therefore, BBB alterations constitute a conserved lethal tumor-host interaction that also underlies other physiological morbidities.


Asunto(s)
Barrera Hematoencefálica/fisiología , Síndromes Paraneoplásicos/fisiopatología , Animales , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Células Cultivadas , Citocinas , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Endoteliales/metabolismo , Interleucina-6/inmunología , Ratones , Ratones Endogámicos C57BL , Neoplasias/patología , Permeabilidad , Factores de Transcripción STAT/metabolismo , Transducción de Señal/fisiología
4.
Sci Adv ; 6(50)2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33298452

RESUMEN

Thermography detects surface temperature and subsurface thermal activity of an object based on the Stefan-Boltzmann law. Impacts of the technology would be more far-reaching with finer thermal sensitivity, called noise-equivalent differential temperature (NEDT). Existing efforts to advance NEDT are all focused on improving registration of radiation signals with better cameras, driving the number close to the end of the roadmap at 20 to 40 mK. In this work, we take a distinct approach of sensitizing surface radiation against minute temperature variation of the object. The emissivity of the thermal imaging sensitizer (TIS) rises abruptly at a preprogrammed temperature, driven by a metal-insulator transition in cooperation with photonic resonance in the structure. The NEDT is refined by over 15 times with the TIS to achieve single-digit millikelvin resolution near room temperature, empowering ambient thermography for a broad range of applications such as in operando electronics analysis and early cancer screening.

5.
Science ; 368(6494): 943-944, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32467380
6.
Sci Immunol ; 5(45)2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198222

RESUMEN

Several immunotherapy approaches that mobilize CD8+ T cell responses stimulate tumor rejection, and some, such as checkpoint blockade, have been approved for several cancer indications and show impressive increases in patient survival. However, tumors may evade CD8+ T cell recognition via loss of MHC molecules or because they contain few or no neoantigens. Therefore, approaches are needed to combat CD8+ T cell-resistant cancers. STING-activating cyclic dinucleotides (CDNs) are a new class of immune-stimulating agents that elicit impressive CD8+ T cell-mediated tumor rejection in preclinical tumor models and are now being tested in clinical trials. Here, we demonstrate powerful CDN-induced, natural killer (NK) cell-mediated tumor rejection in numerous tumor models, independent of CD8+ T cells. CDNs enhanced NK cell activation, cytotoxicity, and antitumor effects in part by inducing type I interferon (IFN). IFN acted in part directly on NK cells in vivo and in part indirectly via the induction of IL-15 and IL-15 receptors, which were important for CDN-induced NK activation and tumor control. After in vivo administration of CDNs, dendritic cells (DCs) up-regulated IL-15Rα in an IFN-dependent manner. Mice lacking the type I IFN receptor specifically on DCs had reduced NK cell activation and tumor control. Therapeutics that activate NK cells, such as CDNs, checkpoint inhibitors, NK cell engagers, and cytokines, may represent next-generation approaches to cancer immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Células Asesinas Naturales/inmunología , Proteínas de la Membrana/agonistas , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Animales , Sistemas CRISPR-Cas/efectos de los fármacos , Sistemas CRISPR-Cas/inmunología , Interferón Tipo I/farmacología , Células Asesinas Naturales/efectos de los fármacos , Proteínas de la Membrana/inmunología , Ratones , Ratones Congénicos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/patología , Células Tumorales Cultivadas
7.
Cell Rep ; 21(8): 2031-2038, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29166595

RESUMEN

All pathogens must acquire nutrients from their hosts. The intracellular bacterial pathogen Legionella pneumophila, the etiological agent of Legionnaires' disease, requires host amino acids for growth within cells. The mechanistic target of rapamycin complex 1 (mTORC1) is an evolutionarily conserved master regulator of host amino acid metabolism. Here, we identify two families of translocated L. pneumophila effector proteins that exhibit opposing effects on mTORC1 activity. The Legionella glucosyltransferase (Lgt) effector family activates mTORC1, through inhibition of host translation, whereas the SidE/SdeABC (SidE) effector family acts as mTORC1 inhibitors. We demonstrate that a common activity of both effector families is to inhibit host translation. We propose that the Lgt and SidE families of effectors work in concert to liberate host amino acids for consumption by L. pneumophila.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Legionella pneumophila/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Portadoras/metabolismo , Enfermedad de los Legionarios/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología
8.
Mol Ther Methods Clin Dev ; 2: 15017, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26029728

RESUMEN

It is a current regulatory requirement to demonstrate absence of detectable replication-competent lentivirus (RCL) in lentiviral vector products prior to use in clinical trials. Immune Design previously described an HIV-1-based integration-deficient lentiviral vector for use in cancer immunotherapy (VP02). VP02 is enveloped with E1001, a modified Sindbis virus glycoprotein which targets dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) expressed on dendritic cells in vivo. Vector enveloped with E1001 does not transduce T-cell lines used in standard HIV-1-based RCL assays, making current RCL testing formats unsuitable for testing VP02. We therefore developed a novel assay to test for RCL in clinical lots of VP02. This assay, which utilizes a murine leukemia positive control virus and a 293F cell line expressing the E1001 receptor DC-SIGN, meets a series of evaluation criteria defined in collaboration with US regulatory authorities and demonstrates the ability of the assay format to amplify and detect a hypothetical RCL derived from VP02 vector components. This assay was qualified and used to test six independent GMP production lots of VP02, in which no RCL was detected. We propose that the evaluation criteria used to rationally design this novel method should be considered when developing an RCL assay for any lentiviral vector.

9.
J Immunother ; 38(2): 41-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25658613

RESUMEN

Dendritic cells (DCs) are essential antigen-presenting cells for the initiation of cytotoxic T-cell responses and therefore attractive targets for cancer immunotherapy. We have developed an integration-deficient lentiviral vector termed ID-VP02 that is designed to deliver antigen-encoding nucleic acids selectively to human DCs in vivo. ID-VP02 utilizes a genetically and glycobiologically engineered Sindbis virus glycoprotein to target human DCs through the C-type lectin DC-SIGN (CD209) and also binds to the homologue murine receptor SIGNR1. Specificity of ID-VP02 for antigen-presenting cells in the mouse was confirmed through biodistribution studies showing that following subcutaneous administration, transgene expression was only detectable at the injection site and the draining lymph node. A single immunization with ID-VP02 induced a high level of antigen-specific, polyfunctional effector and memory CD8 T-cell responses that fully protected against vaccinia virus challenge. Upon homologous readministration, ID-VP02 induced a level of high-quality secondary effector and memory cells characterized by stable polyfunctionality and expression of IL-7Rα. Importantly, a single injection of ID-VP02 also induced robust cytotoxic responses against an endogenous rejection antigen of CT26 colon carcinoma cells and conferred both prophylactic and therapeutic antitumor efficacy. ID-VP02 is the first lentiviral vector which combines integration deficiency with DC targeting and is currently being investigated in a phase I trial in cancer patients.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer , Carcinoma/terapia , Neoplasias del Colon/terapia , Células Dendríticas/inmunología , Vectores Genéticos , Inmunoterapia Adoptiva , Lentivirus/genética , Virus Sindbis/genética , Virus Vaccinia/inmunología , Vaccinia/inmunología , Animales , Carcinoma/inmunología , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Ensayos Clínicos Fase I como Asunto , Neoplasias del Colon/inmunología , Citotoxicidad Inmunológica , Células Dendríticas/trasplante , Células Dendríticas/virología , Ingeniería Genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Memoria Inmunológica , Lectinas Tipo C/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Unión Proteica , Receptores de Superficie Celular/metabolismo , Receptores de Interleucina-7/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Integración Viral/genética
10.
Mol Ther ; 22(3): 575-587, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24419083

RESUMEN

As sentinels of the immune system, dendritic cells (DCs) play an essential role in regulating cellular immune responses. One of the main challenges of developing DC-targeted therapies includes the delivery of antigen to DCs in order to promote the activation of antigen-specific effector CD8 T cells. With the goal of creating antigen-directed immunotherapeutics that can be safely administered directly to patients, Immune Design has developed a platform of novel integration-deficient lentiviral vectors that target and deliver antigen-encoding nucleic acids to human DCs. This platform, termed ID-VP02, utilizes a novel genetic variant of a Sindbis virus envelope glycoprotein with posttranslational carbohydrate modifications in combination with Vpx, a SIVmac viral accessory protein, to achieve efficient targeting and transduction of human DCs. In addition, ID-VP02 incorporates safety features in its design that include two redundant mechanisms to render ID-VP02 integration-deficient. Here, we describe the characteristics that allow ID-VP02 to specifically transduce human DCs, and the advances that ID-VP02 brings to conventional third-generation lentiviral vector design as well as demonstrate upstream production yields that will enable manufacturing feasibility studies to be conducted.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Lentivirus/genética , Virus Sindbis/genética , Proteínas del Envoltorio Viral/genética , Vectores Genéticos/administración & dosificación , Células HEK293 , Humanos , Inmunidad Celular/inmunología , Distribución Tisular
11.
Biores Open Access ; 2(6): 421-30, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24380052

RESUMEN

Lentiviral vectors (LVs) are being developed for clinical use in humans for applications including gene therapy and immunotherapy. A safety concern for use of LVs in humans is the generation of replication-competent lentivirus (RCL), which may arise due to recombination between the split genomes of third-generation LVs. Although no RCL has been detected to date, design optimizations that minimize recombination events between split genome vectors would provide an added safety benefit that may further reduce the risk of RCL formation. Here we describe design elements introduced to the gag/pol plasmid with the intention of eliminating psi-gag recombination between the vector genome and gag/pol. These design changes, consisting of codon optimization of the gag/pol sequence and the deletion of the Rev-responsive element, abrogate the requirement for Rev in expression of Gag protein, thus the resulting gag/pol construct being Rev independent (RI gag/pol). We show that generating vector using the RI gag/pol construct has no effect on particle production or transduction titers. The RI and wild-type gag/pol vectors function equivalently as antigen-specific immunotherapy, potently inducing antigen-specific CD8 T cells that protect against challenge with vaccinia virus. Most importantly, the designed RI gag/pol eliminated detectable psi-gag recombination. Interestingly, we detected recombination between the vector genome and gag/pol from regions without sequence homology. Our findings imply that although unpredictable recombination events may still occur, the RI gag/pol design is sufficient to prevent psi-gag recombination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...