Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 325(4): E303-E309, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584611

RESUMEN

Growth differentiation factor 15 (GDF15) is a stress-induced cytokine. Although the exact physiological function of GDF15 is not yet fully comprehended, the significant elevation of circulating GDF15 levels during gestation suggests a potential role for this hormone in pregnancy. This is corroborated by genetic association studies in which GDF15 and the GDF15 receptor, GDNF family receptor alpha like (GFRAL) have been linked to morning sickness and hyperemesis gravidarum (HG) in humans. Here, we studied GDF15 biology during pregnancy in mice, rats, macaques, and humans. In contrast to macaques and humans, mice and rats exhibited an underwhelming induction in plasma GDF15 levels in response to pregnancy (∼75-fold increase in macaques vs. ∼2-fold increase in rodents). The changes in circulating GDF15 levels were corroborated by the magnitude of Gdf15 mRNA and GDF15 protein expression in placentae from mice, rats, and macaques. These species-specific findings may help guide future studies focusing on GDF15 in pregnancy and on the evaluation of pharmacological strategies to interfere with GDF15-GFRAL signaling to treat severe nausea and HG.NEW & NOTEWORTHY In the present study pregnancy-induced changes in circulating growth differentiation factor 15 (GDF15) in rodents, rhesus macaques, and humans are mapped. In sum, it is demonstrated that humans and macaques exhibit a tremendous increase in placental and circulating GDF15 during pregnancy. In contrast, GDF15 is negligibly increased in pregnant mice and rats, questioning a physiological role for GDF15 in pregnancy in rodents.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento , Obesidad , Animales , Femenino , Humanos , Ratones , Embarazo , Ratas , Citocinas , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Macaca mulatta/metabolismo , Obesidad/metabolismo , Placenta/metabolismo
2.
Nat Metab ; 5(4): 677-698, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37055619

RESUMEN

Lactate is a circulating metabolite and a signalling molecule with pleiotropic physiological effects. Studies suggest that lactate modulates energy balance by lowering food intake, inducing adipose browning and increasing whole-body thermogenesis. Yet, like many other metabolites, lactate is often commercially produced as a counterion-bound salt and typically administered in vivo through hypertonic aqueous solutions of sodium L-lactate. Most studies have not controlled for injection osmolarity and the co-injected sodium ions. Here, we show that the anorectic and thermogenic effects of exogenous sodium L-lactate in male mice are confounded by the hypertonicity of the injected solutions. Our data reveal that this is in contrast to the antiobesity effect of orally administered disodium succinate, which is uncoupled from these confounders. Further, our studies with other counterions indicate that counterions can have confounding effects beyond lactate pharmacology. Together, these findings underscore the importance of controlling for osmotic load and counterions in metabolite research.


Asunto(s)
Depresores del Apetito , Ratones , Masculino , Animales , Depresores del Apetito/farmacología , Ácido Láctico , Termogénesis/fisiología , Sodio , Concentración Osmolar
3.
Endocrinology ; 163(7)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35595472

RESUMEN

A major obstacle to successful smoking cessation is the prospect of weight gain. Despite a clear relationship between cigarette smoking and body weight, surprisingly little is known about the physiological and molecular mechanism by which nicotine affects energy homeostasis and food-motivated behaviors. Here we use loss-of-function mouse models to demonstrate that 2 nicotinic acetylcholine receptor (nAChR) subunits encoded by the CHRNA5-CHRNA3-CHRNB4 gene cluster, α5 and ß4, exhibit divergent roles in food reward. We also reveal that ß4-containing nAChRs are essential for the weight-lowering effects of nicotine in diet-induced obese mice. Finally, our data support the notion of crosstalk between incretin biology and nAChR signaling, as we demonstrate that the glycemic benefits of glucagon-like peptide-1 receptor activation partially relies on ß4-containing nAChRs. Together, these data encourage further research into the role of cholinergic neurotransmission in regulating food reward and the translational pursuit of site-directed targeting of ß4-containing nAChRs for treatment of metabolic disease.


Asunto(s)
Receptores Nicotínicos , Animales , Masculino , Ratones , Nicotina/farmacología , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Recompensa , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA