RESUMEN
DNA N6-adenine methylation (6mA) has recently gained importance as an epigenetic modification in eukaryotes. Its function in lineages with high levels, such as early-diverging fungi (EDF), is of particular interest. Here, we investigated the biological significance and evolutionary implications of 6mA in EDF, which exhibit divergent evolutionary patterns in 6mA usage. The analysis of two Mucorales species displaying extreme 6mA usage reveals that species with high 6mA levels show symmetric methylation enriched in highly expressed genes. In contrast, species with low 6mA levels show mostly asymmetric 6mA. Interestingly, transcriptomic regulation throughout development and in response to environmental cues is associated with changes in the 6mA landscape. Furthermore, we identify an EDF-specific methyltransferase, likely originated from endosymbiotic bacteria, as responsible for asymmetric methylation, while an MTA-70 methylation complex performs symmetric methylation. The distinct phenotypes observed in the corresponding mutants reinforced the critical role of both types of 6mA in EDF.
Asunto(s)
Adenina , Metilación de ADN , Regulación Fúngica de la Expresión Génica , Mucorales , Adenina/metabolismo , Mucorales/genética , Mucorales/metabolismo , Epigénesis Genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Filogenia , Evolución Molecular , Metiltransferasas/metabolismo , Metiltransferasas/genética , ADN de Hongos/genética , ADN de Hongos/metabolismo , MutaciónRESUMEN
SUMMARYThe World Health Organization has established a fungal priority pathogens list that includes species critical or highly important to human health. Among them is the order Mucorales, a fungal group comprising at least 39 species responsible for the life-threatening infection known as mucormycosis. Despite the continuous rise in cases and the poor prognosis due to innate resistance to most antifungal drugs used in the clinic, Mucorales has received limited attention, partly because of the difficulties in performing genetic manipulations. The COVID-19 pandemic has further escalated cases, with some patients experiencing the COVID-19-associated mucormycosis, highlighting the urgent need to increase knowledge about these fungi. This review addresses significant challenges in treating the disease, including delayed and poor diagnosis, the lack of accurate global incidence estimation, and the limited treatment options. Furthermore, it focuses on the most recent discoveries regarding the mechanisms and genes involved in the development of the disease, antifungal resistance, and the host defense response. Substantial advancements have been made in identifying key fungal genes responsible for invasion and tissue damage, host receptors exploited by the fungus to invade tissues, and mechanisms of antifungal resistance. This knowledge is expected to pave the way for the development of new antifungals to combat mucormycosis. In addition, we anticipate significant progress in characterizing Mucorales biology, particularly the mechanisms involved in pathogenesis and antifungal resistance, with the possibilities offered by CRISPR-Cas9 technology for genetic manipulation of the previously intractable Mucorales species.
Asunto(s)
Mucorales , Mucormicosis , Humanos , Mucorales/genética , Mucormicosis/diagnóstico , Mucormicosis/tratamiento farmacológico , Mucormicosis/microbiología , Antifúngicos/uso terapéutico , PandemiasRESUMEN
The epigenetic modifications control the pathogenicity of human pathogenic fungi, which have been poorly studied in Mucorales, causative agents of mucormycosis. This order belongs to a group referred to as early-diverging fungi that are characterized by high levels of N6-methyldeoxy adenine (6mA) in their genome with dense 6mA clusters associated with actively expressed genes. AlkB enzymes can act as demethylases of 6mA in DNA, with the most remarkable eukaryotic examples being mammalian ALKBH1 and Caenorhabditis elegans NMAD-1. The Mucor lusitanicus (formerly M. circinelloides f. lusitanicus) genome contains one gene, dmt1, and two genes, dmt2 and dmt3, encoding proteins similar to C. elegans NMAD-1 and ALKBH1, respectively. The function of these three genes was analyzed by the generation of single and double deletion mutants for each gene. Multiple processes were studied in the mutants, but defects were only found in single and double deletion mutants for dmt1. In contrast to the wild-type strain, dmt1 mutants showed an increase in 6mA levels during the dimorphic transition, suggesting that 6mA is associated with dimorphism in M. lusitanicus. Furthermore, the spores of dmt1 mutants challenged with macrophages underwent a reduction in polar growth, suggesting that 6mA also has a role during the spore-macrophage interaction that could be important in the infection process.
RESUMEN
Members of the ribonuclease III (RNase III) family regulate gene expression by processing double-stranded RNA (dsRNA). This family includes eukaryotic Dicer and Drosha enzymes that generate small dsRNAs in the RNA interference (RNAi) pathway. The fungus Mucor lusitanicus, which causes the deadly infection mucormycosis, has a complex RNAi system encompassing a non-canonical RNAi pathway (NCRIP) that regulates virulence by degrading specific mRNAs. In this pathway, Dicer function is replaced by R3B2, an atypical class I RNase III, and small single-stranded RNAs (ssRNAs) are produced instead of small dsRNA as Dicer-dependent RNAi pathways. Here, we show that R3B2 forms a homodimer that binds to ssRNA and dsRNA molecules, but exclusively cuts ssRNA, in contrast to all known RNase III. The dsRNA cleavage inability stems from its unusual RNase III domain (RIIID) because its replacement by a canonical RIIID allows dsRNA processing. A crystal structure of R3B2 RIIID resembles canonical RIIIDs, despite the low sequence conservation. However, the groove that accommodates dsRNA in canonical RNases III is narrower in the R3B2 homodimer, suggesting that this feature could be responsible for the cleavage specificity for ssRNA. Conservation of this activity in R3B2 proteins from other mucormycosis-causing Mucorales fungi indicates an early evolutionary acquisition.
Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Mucor/enzimología , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Evolución Molecular , Proteínas Fúngicas/genética , Modelos Moleculares , Mucorales/enzimología , Mucorales/patogenicidad , Dominios Proteicos , ARN/metabolismo , Ribonucleasa III/genética , VirulenciaRESUMEN
Mucormycosis is an emerging fungal infection caused by Mucorales with an unacceptable high mortality rate. Mucorales is a complex fungal group, including eleven different genera that can infect humans. This heterogeneity is associated with species-specific invasion pathways and responses to the host defense mechanisms. The host innate immune system plays a major role in preventing Mucorales growth and host invasion. In this system, macrophages are the main immune effector cells in controlling these fungi by rapid and efficient phagocytosis of the spores. However, Mucorales have evolved mechanisms to block phagosomal maturation and species-specific mechanisms to either survive as dormant spores inside the macrophage, as Rhizopus species, or geminate and escape, as Mucor species. Classical fungal models of mucormycosis, mostly Rhizopus, have made important contributions to elucidate key aspects of the interaction between Mucorales and macrophages, but they lack robust tools for genetic manipulation. The recent introduction of the genetically tractable Mucor circinelloides as a model of mucormycosis offers the possibility to analyze gene function. This has allowed the identification of regulatory pathways that control the fungal response to phagocytosis, including a non-canonical RNAi pathway (NCRIP) that regulates the expression of most genes regulated by phagocytosis.
RESUMEN
Centromeres are rapidly evolving across eukaryotes, despite performing a conserved function to ensure high-fidelity chromosome segregation. CENP-A chromatin is a hallmark of a functional centromere in most organisms. Due to its critical role in kinetochore architecture, the loss of CENP-A is tolerated in only a few organisms, many of which possess holocentric chromosomes. Here, we characterize the consequence of the loss of CENP-A in the fungal kingdom. Mucor circinelloides, an opportunistic human pathogen, lacks CENP-A along with the evolutionarily conserved CENP-C but assembles a monocentric chromosome with a localized kinetochore complex throughout the cell cycle. Mis12 and Dsn1, two conserved kinetochore proteins, were found to co-localize to a short region, one in each of nine large scaffolds, composed of an â¼200-bp AT-rich sequence followed by a centromere-specific conserved motif that echoes the structure of budding yeast point centromeres. Resembling fungal regional centromeres, these core centromere regions are embedded in large genomic expanses devoid of genes yet marked by Grem-LINE1s, a novel retrotransposable element silenced by the Dicer-dependent RNAi pathway. Our results suggest that these hybrid features of point and regional centromeres arose from the absence of CENP-A, thus defining novel mosaic centromeres in this early-diverging fungus.
Asunto(s)
Centrómero/metabolismo , Cinetocoros/fisiología , Mucor/genética , Centrómero/fisiología , Proteína A Centromérica/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/fisiología , Segregación Cromosómica/fisiología , Histonas/metabolismo , Cinetocoros/metabolismo , Mucor/metabolismoRESUMEN
Mucormycosis is an emerging fungal infection that is often lethal due to the ineffectiveness of current therapies. Here, we have studied the first stage of this infection-the germination of Mucor circinelloides spores inside phagocytic cells-from an integrated transcriptomic and functional perspective. A relevant fungal gene network is remodeled in response to phagocytosis, being enriched in crucial functions to survive and germinate inside the phagosome, such as nutritional adaptation and response to oxidative stress. Correspondingly, the phagocytic cells induced a specific proinflammatory and apoptotic response to the pathogenic strain. Deletion of fungal genes encoding putative transcription factors (atf1, atf2, and gcn4), extracellular proteins (chi1 and pps1), and an aquaporin (aqp1) revealed that these genes perform important roles in survival following phagocytosis, germination inside the phagosome, and virulence in mice. atf1 and atf2 play a major role in these pathogenic processes, since their mutants showed the strongest phenotypes and both genes control a complex gene network of secondarily regulated genes, including chi1 and aqp1 These new insights into the initial phase of mucormycosis define genetic regulators and molecular processes that could serve as pharmacological targets.IMPORTANCE Mucorales are a group of ancient saprophytic fungi that cause neglected infectious diseases collectively known as mucormycoses. The molecular processes underlying the establishment and progression of this disease are largely unknown. Our work presents a transcriptomic study to unveil the Mucor circinelloides genetic network triggered in fungal spores in response to phagocytosis by macrophages and the transcriptional response of the host cells. Functional characterization of differentially expressed fungal genes revealed three transcription factors and three extracellular proteins essential for the fungus to survive and germinate inside the phagosome and to cause disease in mice. Two of the transcription factors, highly similar to activating transcription factors (ATFs), coordinate a complex secondary gene response involved in pathogenesis. The significance of our research is in characterizing the initial stages that lead to evasion of the host innate immune response and, in consequence, the dissemination of the infection. This genetic study offers possible targets for novel antifungal drugs against these opportunistic human pathogens.
Asunto(s)
Macrófagos/microbiología , Mucor/crecimiento & desarrollo , Mucormicosis/microbiología , Fagosomas/microbiología , Esporas Fúngicas/crecimiento & desarrollo , Adaptación Fisiológica , Animales , Línea Celular , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Masculino , Ratones , Mucormicosis/patología , Análisis de Supervivencia , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismoRESUMEN
Invasive fungal infections caused by Mucorales (mucormycosis) have increased worldwide. These life-threatening infections affect mainly, but not exclusively, immunocompromised patients, and are characterized by rapid progression, severe tissue damage and an unacceptably high rate of mortality. Still, little is known about this disease and its successful therapy. New tools to understand mucormycosis and a screening method for novel antimycotics are required. Bioluminescent imaging is a powerful tool for in vitro and in vivo approaches. Hence, the objective of this work was to generate and functionally analyze bioluminescent reporter strains of Mucor circinelloides, one mucormycosis-causing pathogen. Reporter strains were constructed by targeted integration of the firefly luciferase gene under control of the M. circinelloides promoter Pzrt1. The luciferase gene was sufficiently expressed, and light emission was detected under several conditions. Phenotypic characteristics, virulence potential and antifungal susceptibility were indifferent to the wild-type strains. Light intensity was dependent on growth conditions and biomass, being suitable to determine antifungal efficacy in vitro. This work describes for the first time the generation of reporter strains in a basal fungus that will allow real-time, non-invasive infection monitoring in insect and murine models, and the testing of antifungal efficacy by means other than survival.
RESUMEN
Mucormycosis is a life-threatening fungal infection caused by various ubiquitous filamentous fungi of the Mucorales order, although Rhizopus spp. and Mucor spp. are the most prevalent causal agents. The limited therapeutic options available together with a rapid progression of the infection and a difficult early diagnosis produce high mortality. Here, we developed an adult zebrafish model of Mucor circinelloides infection which allowed us to confirm the link between sporangiospore size and virulence. Transcriptomic studies revealed a local, strong inflammatory response of the host elicited after sporangiospore germination and mycelial tissue invasion, while avirulent and UV-killed sporangiospores failed to induce inflammation and were rapidly cleared. Of the 857 genes modulated by the infection, those encoding cytokines, complement factors, peptidoglycan recognition proteins, and iron acquisition are particularly interesting. Furthermore, neutrophils and macrophages were similarly recruited independently of sporangiospore virulence and viability, which results in a robust depletion of both cell types in the hematopoietic compartment. Strikingly, our model also reveals for the first time the ability of mucormycosis to induce the apoptosis of recruited macrophages but not neutrophils. The induction of macrophage apoptosis, therefore, might represent a key virulence mechanism of these fungal pathogens, providing novel targets for therapeutic intervention in this lethal infection.
Asunto(s)
Apoptosis , Macrófagos/microbiología , Mucormicosis/microbiología , Mucormicosis/patología , Pez Cebra/fisiología , Animales , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Riñón Cefálico/microbiología , Riñón Cefálico/patología , Inflamación/patología , Ratones , Mucorales/patogenicidad , Mucormicosis/genética , Células Mieloides/metabolismo , Neutrófilos/metabolismo , Esporas Fúngicas/citología , Pez Cebra/genéticaRESUMEN
The carotene producer Mucor circinelloides is the fungus within the Mucoromycota phylum with the widest repertoire of molecular tools to manipulate its genome. The initial development of an effective procedure for genetic transformation and later improvements have resulted in an expansion of available tools, which include gene replacement, inactivation of gene expression by RNA silencing, gene overexpression, and functional genomics. Moreover, sequencing of its genome has given a definitive boost to these techniques making attainable the study of genes involved in many physiological or developmental processes, including carotenoid biosynthesis. Here, we describe in detail the latest molecular techniques currently used in M. circinelloides that have made it a valuable model for studying gene function within its phylum.
Asunto(s)
Carotenoides/biosíntesis , Mucor/genética , Mucor/metabolismo , Expresión Génica , Orden Génico , Vectores Genéticos/genética , Genoma Fúngico , Genómica/métodos , Mutación , Fenotipo , Interferencia de ARN , Esporas Fúngicas , Transformación GenéticaRESUMEN
Mucor circinelloides is a fungus that belongs to the order Mucorales. It grows as mold in the environment and can cause mucormycosis, a potentially fatal infection in immunocompromised patients. M. circinelloides is a biodiesel producer and serves as a model organism for studying several biological processes, such as light responses and RNA interference-mediated gene silencing. Over the past decade, the increasing number of molecular tools has also allowed us to manipulate the genome of this fungus. This article outlines the fundamental protocols for the in vitro growth, maintenance, and genetic manipulation of M. circinelloides in the laboratory. © 2018 by John Wiley & Sons, Inc.
Asunto(s)
Clonación Molecular/métodos , Recuento de Colonia Microbiana/métodos , Mucor/crecimiento & desarrollo , Mucor/genética , Mucormicosis/microbiología , Reacción en Cadena de la Polimerasa/métodos , Preservación Biológica/métodos , Medios de Cultivo/metabolismo , Silenciador del Gen , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Eliminación de Secuencia , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrolloRESUMEN
Mucormycosis is an emerging angio-invasive infection caused by Mucorales that presents unacceptable mortality rates. Iron uptake has been related to mucormycosis, since serum iron availability predisposes the host to suffer this infection. In addition, iron uptake has been described as a limiting factor that determines virulence in other fungal infections, becoming a promising field to study virulence in Mucorales. Here, we identified a gene family of three ferroxidases in Mucor circinelloides, fet3a, fet3b and fet3c, which are overexpressed during infection in a mouse model for mucormycosis, and their expression in vitro is regulated by the availability of iron in the culture media and the dimorphic state. Thus, only fet3a is specifically expressed during yeast growth under anaerobic conditions, whereas fet3b and fet3c are specifically expressed in mycelium during aerobic growth. A deep genetic analysis revealed partially redundant roles of the three genes, showing a predominant role of fet3c, which is required for virulence during in vivo infections, and shared functional roles with fet3b and fet3c during vegetative growth in media with low iron concentration. These results represent the first described functional specialization of an iron uptake system during fungal dimorphism.
Asunto(s)
Ceruloplasmina/genética , Proteínas Fúngicas/genética , Mucorales/enzimología , Mucorales/genética , Mucormicosis/microbiología , Familia de Multigenes , Virulencia/genética , Animales , Ceruloplasmina/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Hierro/metabolismo , Masculino , Ratones , Mucorales/crecimiento & desarrolloRESUMEN
The increasing number of infections by species of Mucorales and their high mortality constitute an important concern for public health. This study aims to decipher the genetic basis of Mucor circinelloides pathogenicity, which displays virulence in a strain dependent manner. Assuming that genetic differences between strains may be linked to different pathotypes, we have conducted a study to explore genes responsible for virulence in M. circinelloides by whole genome sequencing of the avirulent strain NRRL3631 and comparison with the virulent strain CBS277.49. This genome analysis revealed 773 truncated, discontiguous and absent genes in the NRRL3631 strain. We also examined phenotypic traits resulting in reduced heat stress tolerance, chitosan content and lower susceptibility to toxic compounds (calcofluor white and sodium dodecyl sulphate) in the virulent strain, suggesting the influence of cell wall on pathogenesis. Based on these results, we focused on studying extracellular protein-coding genes by gene deletion and further pathotype characterization of mutants in murine models of pulmonary and systemic infection. Deletion of gene ID112092, which codes for a hypothetical extracellular protein of unknown function, resulted in significant reduction of virulence. Although pathogenesis is a multifactorial process, these findings highlight the crucial role of surface and secreted proteins in M. circinelloides virulence and should promote further studies of other differential genes.
Asunto(s)
Mucor/patogenicidad , Mucormicosis/microbiología , Mucormicosis/patología , Animales , Modelos Animales de Enfermedad , Eliminación de Gen , Genómica , Ratones , Mucor/genética , Fenotipo , Factores de Virulencia/genética , Secuenciación Completa del GenomaRESUMEN
Mucorales are a group of basal fungi that includes the casual agents of the human emerging disease mucormycosis. Recent studies revealed that these pathogens activate an RNAi-based pathway to rapidly generate drug-resistant epimutant strains when exposed to stressful compounds such as the antifungal drug FK506. To elucidate the molecular mechanism of this epimutation pathway, we performed a genetic analysis in Mucor circinelloides that revealed an inhibitory role for the non-canonical RdRP-dependent Dicer-independent silencing pathway, which is an RNAi-based mechanism involved in mRNA degradation that was recently identified. Thus, mutations that specifically block the mRNA degradation pathway, such as those in the genes r3b2 and rdrp3, enhance the production of drug resistant epimutants, similar to the phenotype previously described for mutation of the gene rdrp1. Our genetic analysis also revealed two new specific components of the epimutation pathway related to the quelling induced protein (qip) and a Sad-3-like helicase (rnhA), as mutations in these genes prevented formation of drug-resistant epimutants. Remarkably, drug-resistant epimutant production was notably increased in M. circinelloides f. circinelloides isolates from humans or other animal hosts. The host-pathogen interaction could be a stressful environment in which the phenotypic plasticity provided by the epimutant pathway might provide an advantage for these strains. These results evoke a model whereby balanced regulation of two different RNAi pathways is determined by the activation of the RNAi-dependent epimutant pathway under stress conditions, or its repression when the regular maintenance of the mRNA degradation pathway operates under non-stress conditions.
Asunto(s)
Mucor/genética , Mutación , Interferencia de ARN , ARN de Hongos/genética , Secuencia de Aminoácidos , Farmacorresistencia Fúngica/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Inmunosupresores/farmacología , Modelos Genéticos , Mucormicosis/microbiología , Estabilidad del ARN , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Tacrolimus/farmacologíaRESUMEN
BACKGROUND: Since the first reports of microRNAs and the advent of new sequencing technologies, a whole new world of regulatory non-conding RNAs (ncRNAs) has revolutionized our knowledge of the RNA dimension. Thousands of functional non-coding transcripts have been identified and grouped into new classes of ncRNAs attending to their origin and function. Despite the fact that we have just started to study ncRNAs, it is now clear that these new regulatory actors play an important role in most of the regulated biological processes and in almost all species. OBJECTIVE: An overview of the state of the art in ncRNAs and the development, diagnosis and treatment of human cancer. METHOD: NcRNAs are deeply involved in the regulation of key genes that are associated with human cancer, representing a promising field for new therapies. This review summarizes the origin, structure and function of the most relevant new classes of ncRNAs, playing special attention to the studies that have related these new regulatory factors with the development of human cancer. RESULTS: From a thorough literature review on scientific publications and patented applications, this review presents recent advances related to ncRNAs and human cancer. In addition, a selection of patents that use ncRNAs to develop new methodologies for the diagnosis and treatment of cancer is included and described in each class of ncRNAs. CONCLUSION: The regulatory potential of ncRNAs opens a new research field that will uncover new and promising aspects in the study of human cancer.
Asunto(s)
Neoplasias/genética , ARN no Traducido/genética , Proyectos de Investigación , Animales , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Patentes como Asunto , Selección de Paciente , Especificidad de la EspecieRESUMEN
Mucorales are an emerging group of human pathogens that are responsible for the lethal disease mucormycosis. Unfortunately, functional studies on the genetic factors behind the virulence of these organisms are hampered by their limited genetic tractability, since they are reluctant to classical genetic tools like transposable elements or gene mapping. Here, we describe an RNAi-based functional genomic platform that allows the identification of new virulence factors through a forward genetic approach firstly described in Mucorales. This platform contains a whole-genome collection of Mucor circinelloides silenced transformants that presented a broad assortment of phenotypes related to the main physiological processes in fungi, including virulence, hyphae morphology, mycelial and yeast growth, carotenogenesis and asexual sporulation. Selection of transformants with reduced virulence allowed the identification of mcplD, which encodes a Phospholipase D, and mcmyo5, encoding a probably essential cargo transporter of the Myosin V family, as required for a fully virulent phenotype of M. circinelloides. Knock-out mutants for those genes showed reduced virulence in both Galleria mellonella and Mus musculus models, probably due to a delayed germination and polarized growth within macrophages. This study provides a robust approach to study virulence in Mucorales and as a proof of concept identified new virulence determinants in M. circinelloides that could represent promising targets for future antifungal therapies.
Asunto(s)
Proteínas Fúngicas/genética , Larva/microbiología , Mariposas Nocturnas/microbiología , Mucor/patogenicidad , Mucormicosis/patología , Miosina Tipo V/genética , Fosfolipasa D/genética , Factores de Virulencia/genética , Animales , Antifúngicos/farmacología , Farmacorresistencia Fúngica Múltiple , Macrófagos/microbiología , Masculino , Ratones , Mucor/genética , Mucormicosis/virología , Interferencia de ARN , ARN Interferente Pequeño/genéticaRESUMEN
RNA interference (RNAi) is a mechanism conserved in eukaryotes, including fungi, that represses gene expression by means of small noncoding RNAs (sRNAs) of about 20 to 30 nucleotides. Its discovery is one of the most important scientific breakthroughs of the past 20 years, and it has revolutionized our perception of the functioning of the cell. Initially described and characterized in Neurospora crassa, the RNAi is widespread in fungi, suggesting that it plays important functions in the fungal kingdom. Several RNAi-related mechanisms for maintenance of genome integrity, particularly protection against exogenous nucleic acids such as mobile elements, have been described in several fungi, suggesting that this is the main function of RNAi in the fungal kingdom. However, an increasing number of fungal sRNAs with regulatory functions generated by specific RNAi pathways have been identified. Several mechanistic aspects of the biogenesis of these sRNAs are known, but their function in fungal development and physiology is scarce, except for remarkable examples such as Mucor circinelloides, in which specific sRNAs clearly regulate responses to environmental and endogenous signals. Despite the retention of RNAi in most species, some fungal groups and species lack an active RNAi mechanism, suggesting that its loss may provide some selective advantage. This article summarizes the current understanding of RNAi functions in the fungal kingdom.
Asunto(s)
Hongos/genética , Hongos/metabolismo , Regulación Fúngica de la Expresión Génica , Interferencia de ARN , ARN de Hongos/genética , ARN de Hongos/metabolismoRESUMEN
The basal fungus Mucor circinelloides has become, in recent years, a valuable model to study RNA-mediated gene silencing or RNA interference (RNAi). Serendipitously discovered in the late 1900s, the gene silencing in M. circinelloides is a landscape of consensus and dissents. Although similar to other classical fungal models in the basic design of the essential machinery that is responsible for silencing of gene expression, the existence of small RNA molecules of different sizes generated during this process and the presence of a mechanism that amplifies the silencing signal, give it a unique identity. In addition, M. circinelloides combines the components of RNAi machinery to carry out functions that not only limit themselves to the defense against foreign genetic material, but it uses some of these elements to regulate the expression of its own genes. Thus, different combinations of RNAi elements produce distinct classes of endogenous small RNAs (esRNAs) that regulate different physiological and developmental processes in response to environmental signals. The recent discovery of a new RNAi pathway involved in the specific degradation of endogenous mRNAs, using a novel RNase protein, adds one more element to the exciting puzzle of the gene silencing in M. circinelloides, in addition to providing hints about the evolutionary origin of the RNAi mechanism.
Asunto(s)
Mucor/crecimiento & desarrollo , Mucor/fisiología , Interferencia de ARN , Silenciador del Gen , Mucor/genética , Estrés Oxidativo , Ribonucleasa III/metabolismo , Esporas Fúngicas/metabolismoRESUMEN
BACKGROUND: RNA interference (RNAi) is a conserved mechanism of genome defence that can also have a role in the regulation of endogenous functions through endogenous small RNAs (esRNAs). In fungi, knowledge of the functions regulated by esRNAs has been hampered by lack of clear phenotypes in most mutants affected in the RNAi machinery. Mutants of Mucor circinelloides affected in RNAi genes show defects in physiological and developmental processes, thus making Mucor an outstanding fungal model for studying endogenous functions regulated by RNAi. Some classes of Mucor esRNAs map to exons (ex-siRNAs) and regulate expression of the genes from which they derive. To have a broad picture of genes regulated by the silencing machinery during vegetative growth, we have sequenced and compared the mRNA profiles of mutants in the main RNAi genes by using RNA-seq. In addition, we have achieved a more complete phenotypic characterization of silencing mutants. RESULTS: Deletion of any main RNAi gene provoked a deep impact in mRNA accumulation at exponential and stationary growth. Genes showing increased mRNA levels, as expected for direct ex-siRNAs targets, but also genes with decreased expression were detected, suggesting that, most probably, the initial ex-siRNA targets regulate the expression of other genes, which can be up- or down-regulated. Expression of 50% of the genes was dependent on more than one RNAi gene in agreement with the existence of several classes of ex-siRNAs produced by different combinations of RNAi proteins. These combinations of proteins have also been involved in the regulation of different cellular processes. Besides genes regulated by the canonical RNAi pathway, this analysis identified processes, such as growth at low pH and sexual interaction that are regulated by a dicer-independent non-canonical RNAi pathway. CONCLUSION: This work shows that the RNAi pathways play a relevant role in the regulation of a significant number of endogenous genes in M. circinelloides during exponential and stationary growth phases and opens up an important avenue for in-depth study of genes involved in the regulation of physiological and developmental processes in this fungal model.