Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 64(14): 10333-10349, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34196551

RESUMEN

Targeting the menin-MLL protein-protein interaction is being pursued as a new therapeutic strategy for the treatment of acute leukemia carrying MLL-rearrangements (MLLr leukemia). Herein, we report M-1121, a covalent and orally active inhibitor of the menin-MLL interaction capable of achieving complete and persistent tumor regression. M-1121 establishes covalent interactions with Cysteine 329 located in the MLL binding pocket of menin and potently inhibits growth of acute leukemia cell lines carrying MLL translocations with no activity in cell lines with wild-type MLL. Consistent with the mechanism of action, M-1121 drives dose-dependent down-regulation of HOXA9 and MEIS1 gene expression in the MLL-rearranged MV4;11 leukemia cell line. M-1121 is orally bioavailable and shows potent antitumor activity in vivo with tumor regressions observed at tolerated doses in the MV4;11 subcutaneous and disseminated models of MLL-rearranged leukemia. Together, our findings support development of an orally active covalent menin inhibitor as a new therapy for MLLr leukemia.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Modelos Moleculares , Estructura Molecular , Proteínas Proto-Oncogénicas/metabolismo , Relación Estructura-Actividad
2.
Cancer Metab ; 8: 1, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31908776

RESUMEN

BACKGROUND: Metabolic programs in cancer cells are influenced by genotype and the tissue of origin. We have previously shown that central carbon metabolism is rewired in pancreatic ductal adenocarcinoma (PDA) to support proliferation through a glutamate oxaloacetate transaminase 1 (GOT1)-dependent pathway. METHODS: We utilized a doxycycline-inducible shRNA-mediated strategy to knockdown GOT1 in PDA and colorectal cancer (CRC) cell lines and tumor models of similar genotype. These cells were analyzed for the ability to form colonies and tumors to test if tissue type impacted GOT1 dependence. Additionally, the ability of GOT1 to impact the response to chemo- and radiotherapy was assessed. Mechanistically, the associated specimens were examined using a combination of steady-state and stable isotope tracing metabolomics strategies and computational modeling. Statistics were calculated using GraphPad Prism 7. One-way ANOVA was performed for experiments comparing multiple groups with one changing variable. Student's t test (unpaired, two-tailed) was performed when comparing two groups to each other. Metabolomics data comparing three PDA and three CRC cell lines were analyzed by performing Student's t test (unpaired, two-tailed) between all PDA metabolites and CRC metabolites. RESULTS: While PDA exhibits profound growth inhibition upon GOT1 knockdown, we found CRC to be insensitive. In PDA, but not CRC, GOT1 inhibition disrupted glycolysis, nucleotide metabolism, and redox homeostasis. These insights were leveraged in PDA, where we demonstrate that radiotherapy potently enhanced the effect of GOT1 inhibition on tumor growth. CONCLUSIONS: Taken together, these results illustrate the role of tissue type in dictating metabolic dependencies and provide new insights for targeting metabolism to treat PDA.

4.
Nature ; 546(7658): 426-430, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28607489

RESUMEN

D-type cyclins (D1, D2 and D3) and their associated cyclin-dependent kinases (CDK4 and CDK6) are components of the core cell cycle machinery that drives cell proliferation. Inhibitors of CDK4 and CDK6 are currently being tested in clinical trials for patients with several cancer types, with promising results. Here, using human cancer cells and patient-derived xenografts in mice, we show that the cyclin D3-CDK6 kinase phosphorylates and inhibits the catalytic activity of two key enzymes in the glycolytic pathway, 6-phosphofructokinase and pyruvate kinase M2. This re-directs the glycolytic intermediates into the pentose phosphate (PPP) and serine pathways. Inhibition of cyclin D3-CDK6 in tumour cells reduces flow through the PPP and serine pathways, thereby depleting the antioxidants NADPH and glutathione. This, in turn, increases the levels of reactive oxygen species and causes apoptosis of tumour cells. The pro-survival function of cyclin D-associated kinase operates in tumours expressing high levels of cyclin D3-CDK6 complexes. We propose that measuring the levels of cyclin D3-CDK6 in human cancers might help to identify tumour subsets that undergo cell death and tumour regression upon inhibition of CDK4 and CDK6. Cyclin D3-CDK6, through its ability to link cell cycle and cell metabolism, represents a particularly powerful oncoprotein that affects cancer cells at several levels, and this property can be exploited for anti-cancer therapy.


Asunto(s)
Ciclina D3/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Femenino , Glucólisis/efectos de los fármacos , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Estrés Oxidativo/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Fosfofructoquinasa-1/metabolismo , Fosforilación/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Purinas/farmacología , Purinas/uso terapéutico , Piruvato Quinasa/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Nature ; 539(7629): 390-395, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27799657

RESUMEN

Intermediary metabolism generates substrates for chromatin modification, enabling the potential coupling of metabolic and epigenetic states. Here we identify a network linking metabolic and epigenetic alterations that is central to oncogenic transformation downstream of the liver kinase B1 (LKB1, also known as STK11) tumour suppressor, an integrator of nutrient availability, metabolism and growth. By developing genetically engineered mouse models and primary pancreatic epithelial cells, and employing transcriptional, proteomics, and metabolic analyses, we find that oncogenic cooperation between LKB1 loss and KRAS activation is fuelled by pronounced mTOR-dependent induction of the serine-glycine-one-carbon pathway coupled to S-adenosylmethionine generation. At the same time, DNA methyltransferases are upregulated, leading to elevation in DNA methylation with particular enrichment at retrotransposon elements associated with their transcriptional silencing. Correspondingly, LKB1 deficiency sensitizes cells and tumours to inhibition of serine biosynthesis and DNA methylation. Thus, we define a hypermetabolic state that incites changes in the epigenetic landscape to support tumorigenic growth of LKB1-mutant cells, while resulting in potential therapeutic vulnerabilities.


Asunto(s)
Transformación Celular Neoplásica , Metilación de ADN , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Células Epiteliales/metabolismo , Silenciador del Gen , Genes Supresores de Tumor , Glicina/metabolismo , Glucólisis , Humanos , Ratones , Conductos Pancreáticos/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Retroelementos/genética , S-Adenosilmetionina/metabolismo , Serina/biosíntesis , Serina-Treonina Quinasas TOR/metabolismo , Transaminasas/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(7): 1778-83, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26831078

RESUMEN

Cancer cells reprogram their metabolism to promote growth and proliferation. The genetic evidence pointing to the importance of the amino acid serine in tumorigenesis is striking. The gene encoding the enzyme 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the first committed step of serine biosynthesis, is overexpressed in tumors and cancer cell lines via focal amplification and nuclear factor erythroid-2-related factor 2 (NRF2)-mediated up-regulation. PHGDH-overexpressing cells are exquisitely sensitive to genetic ablation of the pathway. Here, we report the discovery of a selective small molecule inhibitor of PHGDH, CBR-5884, identified by screening a library of 800,000 drug-like compounds. CBR-5884 inhibited de novo serine synthesis in cancer cells and was selectively toxic to cancer cell lines with high serine biosynthetic activity. Biochemical characterization of the inhibitor revealed that it was a noncompetitive inhibitor that showed a time-dependent onset of inhibition and disrupted the oligomerization state of PHGDH. The identification of a small molecule inhibitor of PHGDH not only enables thorough preclinical evaluation of PHGDH as a target in cancers, but also provides a tool with which to study serine metabolism.


Asunto(s)
Neoplasias/metabolismo , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Serina/biosíntesis , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias/patología
7.
J Clin Invest ; 126(1): 137-50, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26619117

RESUMEN

E2F transcription factors are known regulators of the cell cycle, proliferation, apoptosis, and differentiation. Here, we reveal that E2F1 plays an essential role in liver physiopathology through the regulation of glycolysis and lipogenesis. We demonstrate that E2F1 deficiency leads to a decrease in glycolysis and de novo synthesis of fatty acids in hepatocytes. We further demonstrate that E2F1 directly binds to the promoters of key lipogenic genes, including Fasn, but does not bind directly to genes encoding glycolysis pathway components, suggesting an indirect effect. In murine models, E2F1 expression and activity increased in response to feeding and upon insulin stimulation through canonical activation of the CDK4/pRB pathway. Moreover, E2F1 expression was increased in liver biopsies from obese, glucose-intolerant humans compared with biopsies from lean subjects. Finally, E2f1 deletion completely abrogated hepatic steatosis in different murine models of nonalcoholic fatty liver disease (NAFLD). In conclusion, our data demonstrate that E2F1 regulates lipid synthesis and glycolysis and thus contributes to the development of liver pathology.


Asunto(s)
Factor de Transcripción E2F1/fisiología , Lipogénesis , Enfermedad del Hígado Graso no Alcohólico/etiología , Animales , Quinasa 4 Dependiente de la Ciclina/fisiología , Glucólisis , Humanos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Elementos de Respuesta , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/fisiología
8.
Genes Dev ; 29(17): 1875-89, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26314710

RESUMEN

The retinoblastoma tumor suppressor (pRb) protein associates with chromatin and regulates gene expression. Numerous studies have identified Rb-dependent RNA signatures, but the proteomic effects of Rb loss are largely unexplored. We acutely ablated Rb in adult mice and conducted a quantitative analysis of RNA and proteomic changes in the colon and lungs, where Rb(KO) was sufficient or insufficient to induce ectopic proliferation, respectively. As expected, Rb(KO) caused similar increases in classic pRb/E2F-regulated transcripts in both tissues, but, unexpectedly, their protein products increased only in the colon, consistent with its increased proliferative index. Thus, these protein changes induced by Rb loss are coupled with proliferation but uncoupled from transcription. The proteomic changes in common between Rb(KO) tissues showed a striking decrease in proteins with mitochondrial functions. Accordingly, RB1 inactivation in human cells decreased both mitochondrial mass and oxidative phosphorylation (OXPHOS) function. RB(KO) cells showed decreased mitochondrial respiratory capacity and the accumulation of hypopolarized mitochondria. Additionally, RB/Rb loss altered mitochondrial pyruvate oxidation from (13)C-glucose through the TCA cycle in mouse tissues and cultured cells. Consequently, RB(KO) cells have an enhanced sensitivity to mitochondrial stress conditions. In summary, proteomic analyses provide a new perspective on Rb/RB1 mutation, highlighting the importance of pRb for mitochondrial function and suggesting vulnerabilities for treatment.


Asunto(s)
Mitocondrias/metabolismo , Fosforilación Oxidativa , Proteína de Retinoblastoma/genética , Animales , Células Cultivadas , Colon/fisiopatología , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Pulmón/fisiopatología , Ratones , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteómica , Proteína de Retinoblastoma/metabolismo , Estrés Fisiológico/genética , Transcriptoma
9.
Nature ; 524(7565): 361-5, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26168401

RESUMEN

Activation of cellular stress response pathways to maintain metabolic homeostasis is emerging as a critical growth and survival mechanism in many cancers. The pathogenesis of pancreatic ductal adenocarcinoma (PDA) requires high levels of autophagy, a conserved self-degradative process. However, the regulatory circuits that activate autophagy and reprogram PDA cell metabolism are unknown. Here we show that autophagy induction in PDA occurs as part of a broader transcriptional program that coordinates activation of lysosome biogenesis and function, and nutrient scavenging, mediated by the MiT/TFE family of transcription factors. In human PDA cells, the MiT/TFE proteins--MITF, TFE3 and TFEB--are decoupled from regulatory mechanisms that control their cytoplasmic retention. Increased nuclear import in turn drives the expression of a coherent network of genes that induce high levels of lysosomal catabolic function essential for PDA growth. Unbiased global metabolite profiling reveals that MiT/TFE-dependent autophagy-lysosome activation is specifically required to maintain intracellular amino acid pools. These results identify the MiT/TFE proteins as master regulators of metabolic reprogramming in pancreatic cancer and demonstrate that transcriptional activation of clearance pathways converging on the lysosome is a novel hallmark of aggressive malignancy.


Asunto(s)
Autofagia/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Regulación Neoplásica de la Expresión Génica , Lisosomas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Aminoácidos/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Metabolismo Energético , Femenino , Xenoinjertos , Homeostasis , Humanos , Lisosomas/genética , Ratones , Factor de Transcripción Asociado a Microftalmía/metabolismo , Trasplante de Neoplasias , Neoplasias Pancreáticas/genética , Transcripción Genética
10.
Cancer Res ; 74(14): 3947-58, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24986516

RESUMEN

Loss-of-function mutations in p16(INK4A) (CDKN2A) occur in approximately 80% of sporadic pancreatic ductal adenocarcinoma (PDAC), contributing to its early progression. Although this loss activates the cell-cycle-dependent kinases CDK4/6, which have been considered as drug targets for many years, p16(INK4A)-deficient PDAC cells are inherently resistant to CDK4/6 inhibitors. This study searched for targeted therapies that might synergize with CDK4/6 inhibition in this setting. We report that the IGF1R/IR inhibitor BMS-754807 cooperated with the CDK4/6 inhibitor PD-0332991 to strongly block proliferation of p16(INK4A)-deficient PDAC cells in vitro and in vivo. Sensitivity to this drug combination correlated with reduced activity of the master cell growth regulator mTORC1. Accordingly, replacing the IGF1R/IR inhibitor with the rapalog inhibitor temsirolimus broadened the sensitivity of PDAC cells to CDK4/6 inhibition. Our results establish targeted therapy combinations with robust cytostatic activity in p16(INK4A)-deficient PDAC cells and possible implications for improving treatment of a broad spectrum of human cancers characterized by p16(INK4A) loss.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Neoplasias Pancreáticas/genética , Receptor IGF Tipo 1/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Eliminación de Gen , Humanos , Ratones , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Fosforilación , Proteína de Retinoblastoma/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Curr Opin Cell Biol ; 25(6): 735-40, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23916769

RESUMEN

The pRB tumor suppressor is traditionally seen as an important regulator of the cell cycle. pRB represses the transcriptional activation of a diverse set of genes by the E2F transcription factors and prevents inappropriate S-phase entry. Advances in our understanding of pRB have documented roles that extend beyond the cell cycle and this review summarizes recent studies that link pRB to the control of cell metabolism. pRB has been shown to regulate glucose tolerance, mitogenesis, glutathione synthesis, and the expression of genes involved in central carbon metabolism. Several studies have demonstrated that pRB directly targets a set of genes that are crucial for nucleotide metabolism, and this seems likely to represent one of the ways by which pRB influences the G1/S-phase transition and S-phase progression.


Asunto(s)
Metabolismo/fisiología , Proteína de Retinoblastoma/metabolismo , Animales , Ciclo del Ácido Cítrico , Glucosa/metabolismo , Humanos , Nucleótidos/biosíntesis , Nucleótidos/metabolismo , Oxidación-Reducción
12.
Genes Dev ; 27(2): 182-96, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23322302

RESUMEN

Inactivation of the retinoblastoma tumor suppressor (pRB) alters the expression of a myriad of genes. To understand the altered cellular environment that these changes create, we took advantage of the Drosophila model system and used targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) to profile the metabolic changes that occur when RBF1, the fly ortholog of pRB, is removed. We show that RBF1-depleted tissues and larvae are sensitive to fasting. Depletion of RBF1 causes major changes in nucleotide synthesis and glutathione metabolism. Under fasting conditions, these changes interconnect, and the increased replication demand of RBF1-depleted larvae is associated with the depletion of glutathione pools. In vivo (13)C isotopic tracer analysis shows that RBF1-depleted larvae increase the flux of glutamine toward glutathione synthesis, presumably to minimize oxidative stress. Concordantly, H(2)O(2) preferentially promoted apoptosis in RBF1-depleted tissues, and the sensitivity of RBF1-depleted animals to fasting was specifically suppressed by either a glutamine supplement or the antioxidant N-acetyl-cysteine. Effects of pRB activation/inactivation on glutamine catabolism were also detected in human cell lines. These results show that the inactivation of RB proteins causes metabolic reprogramming and that these consequences of RBF/RB function are present in both flies and human cell lines.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Glutamina/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Daño del ADN , Ayuno/metabolismo , Glutatión/biosíntesis , Humanos , Larva , Mutación , Nucleótidos/biosíntesis , Estrés Oxidativo , Proteína de Retinoblastoma , Estrés Fisiológico
13.
Cell Cycle ; 11(22): 4191-202, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23070566

RESUMEN

The Hippo signaling pathway regulates organ size by controlling the activity of the transcriptional co-activator Yorkie (Yki). Yki is recruited to its target genes by DNA-binding proteins such as Scalloped (Sd). In addition, transcription factor dE2f1, of the Retinoblastoma (Rb) pathway, cooperates with Yki/Sd to synergistically activate a set of common cell cycle target genes. However, little is known about other factors that ensure the proper transcriptional output of Hippo signaling. In this report we identified the chromatin protein GAGA factor (GAF), which is encoded by the Trithorax-like (Trl) gene, as a novel and critical partner in transcriptional regulation by Yki/Sd and dE2f1. We show that GAF is required for the full activation of target genes by dE2f1 and Yki/Sd; while ablation of GAF compromises both normal and inappropriate cell proliferation driven by Yki and dE2f1 in multiple tissues. The importance of GAF is further supported by strong genetic interactions between GAF and the Rb and Hippo pathways. Additionally, we show that GAF directly interacts with RBF, a Drosophila pRB homolog, and partially co-localizes with RBF on polytene chromosomes. Collectively, our data provide a novel connection between a chromatin-binding protein and a transcriptional program governed by the Hippo and Rb pathways.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Factor de Transcripción E2F1/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proliferación Celular , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Factor de Transcripción E2F1/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Bicatenario/metabolismo , Transducción de Señal , Transactivadores/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética , Proteínas Señalizadoras YAP
15.
Genes Dev ; 25(4): 323-35, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21325133

RESUMEN

The Hippo signaling pathway regulates organ size homeostasis, while its inactivation leads to severe hyperplasia in flies and mammals. The transcriptional coactivator Yorkie (Yki) mediates transcriptional output of the Hippo signaling. Yki lacks a DNA-binding domain and is recruited to its target promoters as a complex with DNA-binding proteins such as Scalloped (Sd). In spite of recent progress, an open question in the field is the mechanism through which the Yki/Sd transcriptional signature is defined. Here, we report that Yki/Sd synergizes with and requires the transcription factor dE2F1 to induce a specific transcriptional program necessary to bypass the cell cycle exit. We show that Yki/Sd and dE2F1 bind directly to the promoters of the Yki/Sd-dE2F1 shared target genes and activate their expression in a strong cooperative manner. Consistently, RBF, a negative regulator of dE2F1, negates this synergy and limits the overall level of expression of the Yki/Sd-dE2F1 target genes. Significantly, dE2F1 is needed for Yki/Sd-dependent full activation of these target genes, and a de2f1 mutation strongly blocks yki-induced proliferation in vivo. Thus, the Yki transcriptional program is determined through functional interactions with other transcription factors directly at target promoters. We suggest that such functional interactions would influence Yki activity and help diversify the transcriptional output of the Hippo pathway.


Asunto(s)
Ciclo Celular/genética , Proteínas de Drosophila/fisiología , Factor de Transcripción E2F1/fisiología , Proteínas Nucleares/fisiología , Transactivadores/fisiología , Factores de Transcripción/fisiología , Transcripción Genética/genética , Animales , Animales Modificados Genéticamente , Ciclo Celular/fisiología , División Celular/genética , División Celular/fisiología , Proliferación Celular , Células Cultivadas , Análisis por Conglomerados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Embrión no Mamífero , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Análisis por Micromatrices , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transducción de Señal/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
16.
Development ; 138(2): 251-60, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21148181

RESUMEN

archipelago (ago)/Fbw7 encodes a conserved protein that functions as the substrate-receptor component of a polyubiquitin ligase that suppresses tissue growth in flies and tumorigenesis in vertebrates. Ago/Fbw7 targets multiple proteins for degradation, including the G1-S regulator Cyclin E and the oncoprotein dMyc/c-Myc. Despite prominent roles in growth control, little is known about the signals that regulate Ago/Fbw7 abundance in developing tissues. Here we use the Drosophila eye as a model to identify developmental signals that regulate ago expression. We find that expression of ago mRNA and protein is induced by passage of the morphogenetic furrow (MF) and identify the hedgehog (hh) and Notch (N) pathways as elements of this inductive mechanism. Cells mutant for N pathway components, or hh-defective cells that express reduced levels of the Notch ligand Delta, fail to upregulate ago transcription in the region of the MF; reciprocally, ectopic N activation in eye discs induces expression of ago mRNA. A fragment of the ago promoter that contains consensus binding sites for the N pathway transcription factor Su(H) is bound by Su(H) and confers N-inducibility in cultured cells. The failure to upregulate ago in N pathway mutant cells correlates with accumulation of the SCF-Ago target Cyclin E in the area of the MF, and this is rescued by re-expression of ago. These data suggest a model in which N acts through ago to restrict levels of the pro-mitotic factor Cyclin E. This N-Ago-Cyclin E link represents a significant new cell cycle regulatory mechanism in the developing eye.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Proteínas F-Box/genética , Receptores Notch/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Ciclo Celular , Ciclina E/metabolismo , Cartilla de ADN/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ojo/citología , Proteínas F-Box/química , Proteínas F-Box/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Proteínas Hedgehog/genética , Mutación , Regiones Promotoras Genéticas , Subunidades de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
17.
PLoS Genet ; 6(8): e1001071, 2010 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-20808898

RESUMEN

Previous studies in Drosophila melanogaster have demonstrated that many tumor suppressor pathways impinge on Rb/E2F to regulate proliferation and survival. Here, we report that Tuberous Sclerosis Complex 1 (TSC1), a well-established tumor suppressor that regulates cell size, is an important regulator of dE2F1 during development. In eye imaginal discs, the loss of tsc1 cooperates with rbf1 mutations to promote ectopic S-phase and cell death. This cooperative effect between tsc1 and rbf1 mutations can be explained, at least in part, by the observation that TSC1 post-transcriptionally regulates dE2F1 expression. Clonal analysis revealed that the protein level of dE2F1 is increased in tsc1 or tsc2 mutant cells and conversely decreased in rheb or dTor mutant cells. Interestingly, while s6k mutations have no effect on dE2F1 expression in the wild-type background, S6k is absolutely required for the increase of dE2F1 expression in tsc2 mutant cells. The canonical TSC/Rheb/Tor/S6k pathway is also an important determinant of dE2F1-dependent cell death, since rheb or s6k mutations suppress the developmentally regulated cell death observed in rbf1 mutant eye discs. Our results provide evidence to suggest that dE2F1 is an important cell cycle regulator that translates the growth-promoting signal downstream of the TSC/Rheb/Tor/S6k pathway.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ojo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Supervivencia Celular , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ojo/metabolismo , Mutación , Proteína de Retinoblastoma , Transducción de Señal
18.
PLoS Genet ; 6(4): e1000918, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20421993

RESUMEN

Functional inactivation of the Retinoblastoma (pRB) pathway is an early and obligatory event in tumorigenesis. The importance of pRB is usually explained by its ability to promote cell cycle exit. Here, we demonstrate that, independently of cell cycle exit control, in cooperation with the Hippo tumor suppressor pathway, pRB functions to maintain the terminally differentiated state. We show that mutations in the Hippo signaling pathway, wts or hpo, trigger widespread dedifferentiation of rbf mutant cells in the Drosophila eye. Initially, rbf wts or rbf hpo double mutant cells are morphologically indistinguishable from their wild-type counterparts as they properly differentiate into photoreceptors, form axonal projections, and express late neuronal markers. However, the double mutant cells cannot maintain their neuronal identity, dedifferentiate, and thus become uncommitted eye specific cells. Surprisingly, this dedifferentiation is fully independent of cell cycle exit defects and occurs even when inappropriate proliferation is fully blocked by a de2f1 mutation. Thus, our results reveal the novel involvement of the pRB pathway during the maintenance of a differentiated state and suggest that terminally differentiated Rb mutant cells are intrinsically prone to dedifferentiation, can be converted to progenitor cells, and thus contribute to cancer advancement.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila/genética , Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Retina/metabolismo , Proteína de Retinoblastoma/genética , Transducción de Señal , Factores de Transcripción/genética , Animales , Apoptosis , Ciclo Celular , Proliferación Celular , Drosophila/embriología , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Retinoblastoma/metabolismo , Factores de Transcripción/metabolismo
19.
Curr Biol ; 19(18): 1503-10, 2009 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-19733076

RESUMEN

BACKGROUND: The Drosophila archipelago gene (ago) encodes the specificity component of a ubiquitin ligase that targets the cyclin E and dMyc proteins for degradation. Its human ortholog, Fbw7, is commonly lost in cancers, suggesting that failure to degrade ago/Fbw7 targets drives excess tissue growth. RESULTS: We find that ago loss induces hyperplasia of some organs but paradoxically reduces the size of the adult eye. This reflects a requirement for ago to restrict apoptotic activity of the rbf1/de2f1 pathway adjacent to the eye-specific morphogenetic furrow (MF): ago mutant cells display elevated de2f1 activity, express the prodeath dE2f1 targets hid and rpr, and undergo high rates of apoptosis. These phenotypes are dependent on rbf1, de2f1, hid, and the rbf1/de2f1 regulators cyclin E and dacapo but are independent of dp53. A transactivation-deficient de2f1 allele blocks MF-associated apoptosis of ago mutant cells but does not retard their clonal overgrowth, indicating that intact de2f1 function is required for the death but not overproliferation of ago cells. Epidermal growth factor receptor (EGFR) and wingless (wg) alleles also modify the ago apoptotic phenotype, indicating that these pathways may modulate the underlying sensitivity of ago mutant cells to apoptotic signals. CONCLUSIONS: These data show that ago loss requires a collaborating block in cell death to efficiently drive tissue overgrowth and that this conditional phenotype reflects a role for ago in restricting apoptotic output of the rbf1/de2f1 pathway. Moreover, the susceptibility of ago mutant cells to succumb to this apoptotic program appears to depend on local variations in extracellular signaling that could thus determine tissue-specific fates of ago mutant cells.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/fisiología , Apoptosis/genética , Ojo Compuesto de los Artrópodos/crecimiento & desarrollo , Proteínas de Drosophila/fisiología , Drosophila/citología , Factores de Transcripción E2F/fisiología , Proteínas F-Box/fisiología , Animales , Ojo Compuesto de los Artrópodos/anatomía & histología , Ojo Compuesto de los Artrópodos/citología , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Proteínas F-Box/genética , Regulación del Desarrollo de la Expresión Génica , Mutación , Factores de Transcripción
20.
Genetics ; 183(1): 79-92, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19546319

RESUMEN

The growth suppressive function of the retinoblastoma (pRB) tumor suppressor family is largely attributed to its ability to negatively regulate the family of E2F transcriptional factors and, as a result, to repress E2F-dependent transcription. Deregulation of the pRB pathway is thought to be an obligatory event in most types of cancers. The large number of mammalian E2F proteins is one of the major obstacles that complicate their genetic analysis. In Drosophila, the E2F family consists of only two members. They are classified as an activator (dE2F1) and a repressor (dE2F2). It has been previously shown that proliferation of de2f1 mutant cells is severely reduced due to unchecked activity of the repressor dE2F2 in these cells. We report here a mosaic screen utilizing the de2f1 mutant phenotype to identify suppressors that overcome the dE2F2/RBF-dependent proliferation block. We have isolated l(3)mbt and B52, which are known to be required for dE2F2 function, as well as genes that were not previously linked to the E2F/pRB pathway such as Doa, gfzf, and CG31133. Inactivation of gfzf, Doa, or CG31133 does not relieve repression by dE2F2. We have shown that gfzf and CG31133 potentiate E2F-dependent activation and synergize with inactivation of RBF, suggesting that they may act in parallel to dE2F. Thus, our results demonstrate the efficacy of the described screening strategy for studying regulation of the dE2F/RBF pathway in vivo.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Pruebas Genéticas/métodos , Supresión Genética , Factores de Transcripción/genética , Algoritmos , Animales , Animales Modificados Genéticamente , Proliferación Celular , Células Cultivadas , Femenino , Prueba de Complementación Genética/métodos , Masculino , Modelos Genéticos , Mosaicismo , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología , Fenotipo , Proteína de Retinoblastoma/genética , Supresión Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA