Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686188

RESUMEN

The platelet aggregation inhibitory activity of selected xanthine-based adenosine A2A and A2B receptor antagonists was investigated, and attempts were made to explain the observed effects. The selective A2B receptor antagonist PSB-603 and the A2A receptor antagonist TB-42 inhibited platelet aggregation induced by collagen or ADP. In addition to adenosine receptor blockade, the compounds were found to act as moderately potent non-selective inhibitors of phosphodiesterases (PDEs). TB-42 showed the highest inhibitory activity against PDE3A along with moderate activity against PDE2A and PDE5A. The antiplatelet activity of PSB-603 and TB-42 may be due to inhibition of PDEs, which induces an increase in cAMP and/or cGMP concentrations in platelets. The xanthine-based adenosine receptor antagonists were found to be non-cytotoxic for platelets. Some of the compounds showed anti-oxidative properties reducing lipid peroxidation. These results may provide a basis for the future development of multi-target xanthine derivatives for the treatment of inflammation and atherosclerosis and the prevention of heart infarction and stroke.


Asunto(s)
Aterosclerosis , Plaquetas , Animales , Ratas , Xantina/farmacología , Adenosina
2.
Antioxidants (Basel) ; 12(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37237977

RESUMEN

This study aimed to establish the in vitro shoot culture of Isatis tinctoria L. and its ability to produce antioxidant bioactive compounds. The Murashige and Skoog (MS) medium variants, containing different concentrations (0.1-2.0 mg/L) of benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) were tested. Their influence on the growth of biomass, accumulation of phenolic compounds, and antioxidant potential was evaluated. To improve the phenolic content, agitated cultures (MS 1.0/1.0 mg/L BAP/NAA) were treated with different elicitors, including the following: Methyl Jasmonate, CaCl2, AgNO3, and yeast, as well as with L-Phenylalanine and L-Tyrosine-precursors of phenolic metabolites. The total phenolic content (TPC) of hydroalcoholic extracts (MeOH 70%) obtained from the biomass grown in vitro was determined spectrophotometrically; phenolic acids and flavonoids were quantified by RP-HPLC. Moreover, the antioxidant potential of extracts was examined through the DPPH test, the reducing power, and the Fe2+ chelating assays. The biomass extracts obtained after 72 h of supplementation with Tyr (2 g/L), as well as after 120 and 168 h with Tyr (1 g/L), were found to be the richest in TPC (49.37 ± 0.93, 58.65 ± 0.91, and 60.36 ± 4.97 mg GAE/g extract, respectively). Whereas among the elicitors, the highest TPC achieved was with CaCl2 (20 and 50 mM 24 h), followed by MeJa (50 and 100 µM, 120 h). The HPLC of the extracts led to the identification of six flavonoids and nine phenolic acids, with vicenin-2, isovitexin, syringic, and caffeic acids being the most abundant compounds. Notably, the amount of all flavonoids and phenolic acids detected in the elicited/precursor feeding biomass was higher than that of the leaves of the parental plant. The best chelating activity was found with the extract of biomass fed with Tyrosine 2 g/L, 72 h (IC50 0.27 ± 0.01 mg/mL), the strongest radical scavenging (DPPH test) for the extract obtained from biomass elicited with CaCl2 50 mM, after 24 h of incubation (25.14 ± 0.35 mg Trolox equivalents (TE)/g extract). In conclusion, the in vitro shoot culture of I. tinctoria supplemented with Tyrosine, as well as MeJa and/or CaCl2, could represent a biotechnological source of compounds with antioxidant properties.

3.
Antioxidants (Basel) ; 13(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275633

RESUMEN

Caramel, defined as a coloring agent and as an antioxidant, is used in several kinds of food products and is consumed by many people in different amounts. In our research we showed that the caramelization of sucrose under special conditions leads to the formation of carbon quantum dots (CQDs). So, it makes sense that humans also consume this type of CQDs, and it is theoretically possible for these particles to affect the body. Despite an increasing number of studies describing different types of CQDs, their biosafety is still not clearly understood. In our in vitro research, we examined the effects on platelet aggregation, protein glycation and lipid peroxidation of CQDs and caramel formed from a 20% sucrose solution. In vitro aggregation tests were conducted using freshly collected whole rat blood in a multiplate platelet function analyzer and measurer of electric impedance. The cytotoxic effect of the tested solutions on blood platelets was evaluated based on the release of lactate dehydrogenase. The formation of glycated bovine serum albumin was measured as fluorescence intensity and fructosamine level. The reducing power of the solutions was determined in adipose tissue, and their effect on lipid peroxidation in adipose tissue in vitro was also assessed. By measuring the intensity of hemolysis after incubation in solutions with red blood cell, we assessed their influence on the integration of the red blood cell membrane. All tests were performed in comparison with glucose and fructose and other frequently used sweeteners, such as erythritol and xylitol. Our study showed that caramel and CQDs formed from caramel may influence the glycation process and integrity of the red blood cell membrane, but unlike glucose and fructose, they decrease lipid peroxidation and may reduce Fe (III). Additionally, it is unlikely that they affect platelet aggregation. Compared to glucose and fructose, they may be safer for patients with metabolic disorders; however, further research is needed on the safety and biological activity of caramel and CQD.

4.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362227

RESUMEN

The adenosine A2A and A2B receptors are promising therapeutic targets in the treatment of obesity and diabetes since the agonists and antagonists of these receptors have the potential to positively affect metabolic disorders. The present study investigated the link between body weight reduction, glucose homeostasis, and anti-inflammatory activity induced by a highly potent and specific adenosine A2B receptor antagonist, compound PSB-603. Mice were fed a high-fat diet for 14 weeks, and after 12 weeks, they were treated for 14 days intraperitoneally with the test compound. The A1/A2A/A2B receptor antagonist theophylline was used as a reference. Following two weeks of treatment, different biochemical parameters were determined, including total cholesterol, triglycerides, glucose, TNF-α, and IL-6 blood levels, as well as glucose and insulin tolerance. To avoid false positive results, mouse locomotor and spontaneous activities were assessed. Both theophylline and PSB-603 significantly reduced body weight in obese mice. Both compounds had no effects on glucose levels in the obese state; however, PSB-603, contrary to theophylline, significantly reduced triglycerides and total cholesterol blood levels. Thus, our observations showed that selective A2B adenosine receptor blockade has a more favourable effect on the lipid profile than nonselective inhibition.


Asunto(s)
Enfermedades Metabólicas , Antagonistas de Receptores Purinérgicos P1 , Animales , Ratones , Adenosina/farmacología , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Antagonistas del Receptor de Adenosina A2/metabolismo , Peso Corporal , Colesterol/uso terapéutico , Glucosa/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Nucleósidos de Purina , Antagonistas de Receptores Purinérgicos P1/uso terapéutico , Receptor de Adenosina A2B/metabolismo , Teofilina , Triglicéridos/uso terapéutico
5.
Hum Immunol ; 83(11): 755-767, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35963787

RESUMEN

In December 2019, a new single-stranded RNA coronavirus, SARS-CoV-2, appeared in China and quickly spread around the world leading to a pandemic. Infection with SARS-CoV-2 generates symptoms ranging from asymptomatic to severe, occasionally requiring hospitalization in intensive care units, and, in more severe cases, leading to death. Scientists and researchers around the world have made a real race against time to develop various vaccines to slow down and stop the spread of the virus. In addition to conventional viral vector vaccines, new generation mRNA vaccines, BNT152b2 (Comirnaty) and mRNA-1273 (Spikevax), have been developed respectively by Pfizer/BioNTech and Moderna. These vaccines act on immune cells to induce an immune response with the production of specific antibodies against Spike protein of SARS-CoV-2, and to stimulate the differentiation of T and B memory cells. The objective of this review is to provide a detailed picture of the validity of these new vaccines and the safety of vaccination. Not only was the immunogenic effect of mRNA vaccines evaluated, but also the psychosocial impact they had on the population. The data collected show that this type of vaccine can also be an excellent candidate for future treatment and eradication of possible new pathologies with viral and non-viral etiology.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunogenicidad Vacunal , Vacunación , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunación/psicología
6.
Oxid Med Cell Longev ; 2022: 3567879, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795852

RESUMEN

Stress that can occur at different levels of a person's life can cause and exacerbate various diseases. Oxidative stress and inflammation underlie this process at the cellular level. There is an urgent need to identify new and more effective therapeutic targets for the treatment of stress-induced behavioral disorders and specific drugs that affect these targets. Isatis tinctoria L. is a herbaceous species in the Brassicaceae family. Due to its potential antioxidant, nitric oxide- (NO-) inhibiting, anti-inflammatory, and neuroprotective properties, I. tinctoria could be used to treat depression, anxiety, and stress resistance. Hence, the present study is aimed at delineating whether administration of I. tinctoria leaf extract may improve stress-induced disorders in mice. A set of four behavioral tests was selected that together are suitable for phenotyping acute restraint stress-associated behaviors in mice, namely locomotor activity, social integration, dark/light box, and splash tests. The plasma and brains were collected. A brain-derived neurotrophic factor, tumor necrosis factor-alpha, C-reactive protein, corticosterone, NO, reactive oxygen species levels, superoxide dismutase and catalase activity, and ferric-reducing antioxidant power were measured. In mice stressed by immobilization, decreased locomotor activity, anxiety-like behavior, and contact with other individuals were observed, as well as increased oxidative stress and increased levels of nitric oxide in the brain and plasma C-reactive protein. A single administration of I. tinctoria leaf extract was able to reverse the behavioral response to restraint by a mechanism partially dependent on the modulation of oxidative stress, neuroinflammation, and NO reduction. In conclusion, Isatis tinctoria hydroalcoholic leaf extract can reduce stress-induced behavioral disturbances by regulating neurooxidative, neuronitrosative, and neuroimmune pathways. Therefore, it could be recommended for further research on clinical efficacy in depression and anxiety disorder treatment.


Asunto(s)
Isatis , Animales , Antioxidantes/farmacología , Proteína C-Reactiva , Humanos , Ratones , Óxido Nítrico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
7.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35806019

RESUMEN

Many studies involving compounds that enhance histamine release, such as histamine H3 receptor (H3R) antagonists, have shown efficacy in inhibiting weight gain, but none have passed clinical trials. As part of the search for H3 receptor ligands that have additional properties, the aim of this study is to evaluate the activity in the reduction in weight gain in a rat model of excessive eating, as well as the impact on selected metabolic parameters, and the number and size of adipocytes of two new H3R antagonists, KSK-60 and KSK-74, which also exert a significant affinity at the sigma-2 receptor. Compounds KSK-60 and KSK-74 are homologues and the elongation of the distal part of the molecule resulted in an approximate two-fold reduction in affinity at H3R, but simultaneously an almost two-fold increase in affinity at the sigma-2 receptor. Animals fed palatable feed and receiving KSK-60 or KSK-74 both at 10 mg/kg b.w. gained significantly less weight than animals in the control obese group. Moreover, KSK-74 significantly compensated for metabolic disturbances that accompany obesity, such as an increase in plasma triglyceride, resistin, and leptin levels; improved glucose tolerance; and protected experimental animals against adipocyte hypertrophy. Furthermore, KSK-74 inhibited the development of inflammation in obesity-exposed adipose tissue. The in vivo pharmacological activity of the tested ligands appears to correlate with the affinity at the sigma-2 receptors; however, the explanation of this phenomenon requires further and extended research.


Asunto(s)
Receptores Histamínicos H3 , Animales , Histamina , Antagonistas de los Receptores Histamínicos/uso terapéutico , Ligandos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratas , Receptores Histamínicos H3/metabolismo , Receptores sigma , Aumento de Peso
8.
Naunyn Schmiedebergs Arch Pharmacol ; 395(8): 963-974, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35511242

RESUMEN

The aim of this study was to determine, in the diet-induced obesity model in rats, the potential of Guanabenz to reduce body weight and ameliorate some metabolic disturbances. Obesity was induced in rats by a high-fat diet. After 10 weeks, rats were treated intraperitoneally with Guanabenz at the two doses: 2 or 5 mg/kg b.w./day, once daily for 25 days. The spontaneous activity of rats was measured for 24 h on the 1st and 24th day of the Guanabenz treatment with a special radio-frequency identification system. Gastric emptying was measured in intragastric phenol red-treated mice by measuring the color of the stomach homogenate 30 min after phenol red administration. Intraperitoneal administration of Guanabenz for 25 days to obese rats resulted in a significant decrease in body weight compared to the baseline values (about 11% at a dose of 5 mg/kg). Both body weight and the amount of adipose tissue in the groups receiving Guanabenz decreased to the levels observed in the control rats fed only standard feed. The anorectic effect occurred in parallel with a reduction in plasma triglyceride levels. We also confirmed the beneficial effect of Guanabenz on plasma glucose level. The present study demonstrates that the administration of Guanabenz strongly inhibits gastric emptying (about 80% at a dose of 5 mg/kg). Guanabenz can successfully and simultaneously attenuate all the disorders and risk factors of metabolic syndrome: hypertension, hyperglycemia, obesity, and dyslipidemia. However, the exact cellular mechanisms of its action require further research.


Asunto(s)
Guanabenzo , Fenolsulfonftaleína , Animales , Peso Corporal , Guanabenzo/efectos adversos , Guanidinas/uso terapéutico , Ratones , Obesidad/tratamiento farmacológico , Preparaciones Farmacéuticas , Ratas
9.
Molecules ; 27(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35056739

RESUMEN

The use of polyphenols as adjuvants in lowering risk factors for various debilitating diseases has been investigated in recent years due to their possible antioxidant action. Polyphenols represent a fascinating and relatively new subject of research in nutraceuticals and nutrition, with interest rapidly expanding since they can help maintain health by controlling metabolism, weight, chronic diseases, and cell proliferation. Resveratrol is a phenolic compound found mostly in the pulp, peels, seeds, and stems of red grapes. It has a wide variety of biological actions that can be used to prevent the beginning of various diseases or manage their symptoms. Resveratrol can influence multiple inflammatory and non-inflammatory responses, protecting organs and tissues, thanks to its interaction with immune cells and its activity on SIRT1. This compound has anti-inflammatory, antioxidant, anti-apoptotic, neuroprotective, cardioprotective, anticancer, and antiviral properties, making it a potential adjunct to traditional pharmaceutical therapy in public health. This review aims to provide a comprehensive analysis of resveratrol in terms of active biological effects and mechanism of action in modifying the immune cellular response to promote human psychophysical health.


Asunto(s)
Antivirales/farmacología , Resveratrol/inmunología , Resveratrol/farmacología , Animales , Antiinflamatorios no Esteroideos/farmacología , Antivirales/inmunología , Células Dendríticas/efectos de los fármacos , Humanos , Inmunidad Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/inmunología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Sirtuina 1/metabolismo , Tratamiento Farmacológico de COVID-19
10.
Nat Prod Res ; 36(22): 5916-5933, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34963389

RESUMEN

Neurodegeneration is a degenerative process characterized by the progressive loss of the structure and function of neurons that involves several immune cells. It is the primary cause of dementia and other several syndromes, known as neurodegenerative diseases. These disorders are age-related and it is estimated that by 2040 there will be approximately 81.1 million people suffering from these diseases. In addition to the traditional pharmacological therapy, in recent years nutraceuticals, naturally based compounds with a broad spectrum of biological effects: anti-aging, antioxidants, hypoglycaemic, hypocholesterolemic, anticancer, anxiolytic, antidepressant, etc., assumed an important role in counteracting these pathologies. In particular, several compounds such as astaxanthin, baicalein, glycyrrhizin, St. John's wort, and Ginkgo biloba L. extracts show particular neuroprotective and immunomodulatory abilities, involving several immune cells and some neurotransmitters that play a critical role in neurodegeneration, making them particularly useful in improving the symptoms and progression of neurodegenerative diseases.


Asunto(s)
Hypericum , Enfermedades Neurodegenerativas , Humanos , Hypericum/química , Fitoterapia , Enfermedades Neurodegenerativas/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antidepresivos/farmacología , Suplementos Dietéticos
11.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34832862

RESUMEN

Noting the worldwide rapid increase in the prevalence of overweight and obesity new effective drugs are now being sought to combat these diseases. Histamine H3 receptor antagonists may represent an effective therapy as they have been shown to modulate histamine synthesis and release and affect a number of other neurotransmitters (norepinephrine, acetylcholine, γ-aminobutyric acid, serotonin, substance P) thus influencing the food intake. Based on the preliminary studies determining affinity, intrinsic activity, and selected pharmacokinetic parameters, two histamine H3 receptor ligands were selected. Female rats were fed palatable food for 28 days and simultaneously administered the tested compounds intraperitoneally (i.p.) at a dose of 10 or 1 mg/kg b.w./day. Weight was evaluated daily and calorie intake was evaluated once per week. The plasma levels of cholesterol, triglycerides, leptin, adiponectin, ghrelin, corticosterone, CRP and IL-6 were determined at the end of experiment. The glucose tolerance test was also performed. To exclude false positives, the effect of tested compounds on spontaneous activity was monitored during the treatment, as well as the amount of consumed kaolin clay was studied as a reflection of possible gastrointestinal disturbances comparable to nausea. The histamine H3 receptor antagonists KSK-59 and KSK-73 administered i.p. at a dose of 10 mg/kg b.w. prevented weight gain in a rat model of excessive eating. They reduced adipose tissue deposits and improved glucose tolerance. Both compounds showed satisfying ability to penetrate through biological membranes determined in in vitro studies. Compound KSK-73 also reduced the caloric intake of the experimental animals what indicates its anorectic effect. These results show the pharmacological properties of histamine H3 receptor antagonists, (4-pyridyl)piperazine derivatives, as the compounds causing not only slower weight gain but also ameliorating some metabolic disorders in rats having the opportunity to overeat.

12.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34451896

RESUMEN

GPR18 is an orphan GPCR that is activated by the cannabinoid tetrahydrocannabinol (THC). Emerging evidence indicates its involvement in the control of cardiovascular functions, including heart rate, contractility, vascular tone, as well as blood pressure. Therefore, we investigated the effects of selective GPR18 receptor ligands, namely PSB-KD-107 (agonist) and PSB-CB-92 (antagonist), on blood pressure, electrocardiogram (ECG), and vascular dilatation in vitro and in vivo, as well as their anti-oxidative potential in in vitro ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical (DPPH) assays. Our results clearly show that PSB-KD-107 dilates blood vessels. This effect is related to its activation of GPR18 as it can be blocked by the GPR18 antagonist PSB-CB-92. Moreover, our finding confirms the presence of GPR18 in blood vessels. The mechanism of the vasorelaxant activity of PSB-KD-107 is mainly related to endothelial nitric oxide generation; however, we cannot exclude additional nitric oxide-independent mechanisms or a direct influence on K+ channels. PSB-KD-107 may affect blood pressure and heart function after a single administration; however, this effect was no longer observed after repeated administrations once daily for eight days. PSB-KD-107 does not affect platelet aggregation-an important feature considering the safety of its administration. PSB-KD-107 also shows a significant anti-oxidant effect and further studies of its antioxidant activity in vivo are justified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA