Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(15): 14718-14730, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490035

RESUMEN

The gut microbiota are prominent in preserving intestinal environmental homeostasis and managing human health, and their dysbiosis has been directly related to many kinds of intestinal diseases. Probiotics-based therapy appears as a promising approach for the treatment of gut microbiota dysbiosis, while it always suffers from limited bioavailability and therapeutic effect after oral administration. Herein, we presented a facile and safe strategy to treat colitis by nanoencapsulation of probiotics and an anti-inflammatory agent, 5-aminosalicylic acid (5-ASA), within the gastrointestinal microenvironment responsive alginate polysaccharide. Because of acid resistance, the alginate-based coating protected probiotics from the harsh gastric condition. The coating could be disintegrated to release probiotics and 5-ASA upon arriving in the intestinal tract, where the pH is normally higher than 5. In the dextran sulfate sodium-induced colitis mouse model, probiotics recovered their bioactivities and acted together with anti-inflammatory 5-ASA to alleviate colitis by upregulating microbiota richness and diversity, reducing expression of proinflammatory cytokines, and restoring intestinal barriers. This work demonstrated the synergistic therapy of intestinal diseases based on alginate-encapsulated probiotics and a clinical drug, which provided an extensive method to improve the therapeutic effect of oral microecologics.


Asunto(s)
Colitis , Probióticos , Humanos , Animales , Ratones , Preparaciones Farmacéuticas , Disbiosis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Probióticos/farmacología , Probióticos/uso terapéutico , Antiinflamatorios/uso terapéutico , Alginatos/uso terapéutico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colon
2.
Nano Res ; 15(4): 3323-3337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35003529

RESUMEN

The emergence of human coronaviruses (HCoVs), especially the current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), engender severe threats to public health globally. Despite the outstanding breakthrough of new vaccines and therapeutic medicines in the past years, HCoVs still undergo unpredictable mutations, thus demanding more effective diagnostic and therapeutic strategies. Benefitting from the unique physicochemical properties and multiple nano-bio interactions, nanomaterials hold promising potential to fight against various HCoVs, either by providing sensitive and economic nanosensors for rapid viral detection, or by developing translatable nanovaccines and broad-spectrum nanomedicines for HCoV treatment. Herein, we systemically summarized the recent applications of nanoagents in diagnostics and therapeutics for HCoV-induced diseases, as well as their limitations and perspectives against HCoV variants. We believe this review will promote the design of innovative theranostic nanoagents for the current and future HCoV-caused pandemics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...