Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Discov Oncol ; 14(1): 184, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37847433

RESUMEN

Previous clinic models for patients with hepatocellular carcinoma (HCC) receiving transarterial chemoembolization (TACE) mainly focused on the overall survival, whereas a simple-to-use tool for predicting the response to the first TACE and the management of risk classification before TACE are lacking. Our aim was to develop a scoring system calculated manually for these patients. A total of 437 patients with hepatocellular carcinoma (HCC) who underwent TACE treatment were carefully selected for analysis. They were then randomly divided into two groups: a training group comprising 350 patients and a validation group comprising 77 patients. Furthermore, 45 HCC patients who had recently undergone TACE treatment been included in the study to validate the model's efficacy and applicability. The factors selected for the predictive model were comprehensively based on the results of the LASSO, univariate and multivariate logistic regression analyses. The discrimination, calibration ability and clinic utility of models were evaluated in both the training and validation groups. A prediction model incorporated 3 objective imaging characteristics and 2 indicators of liver function. The model showed good discrimination, with AUROCs of 0.735, 0.706 and 0.884 and in the training group and validation groups, and good calibration. The model classified the patients into three groups based on the calculated score, including low risk, median risk and high-risk groups, with rates of no response to TACE of 26.3%, 40.2% and 76.8%, respectively. We derived and validated a model for predicting the response of patients with HCC before receiving the first TACE that had adequate performance and utility. This model may be a useful and layered management tool for patients with HCC undergoing TACE.

2.
Analyst ; 136(8): 1632-6, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21336410

RESUMEN

A simple, selective and sensitive turn-on fluorescent sensor for the detection of mercury(II) ion was developed using Sybr Green I as the signal reporter and SWCNTs as the quencher. Due to the affinity of SWCNTs towards ssDNA and organic dye, Sybr Green I, thymine-rich ssDNA and SWCNTs could form a self-assembly of three components, resulting in fluorescence quenching. Upon addition of another thymine-rich ssDNA and mercury(II) ion, formation of dsDNA via T-Hg(2+)-T base pairs enabled Sybr Green I to intercalate into the dsDNA, resulting in the restoration of fluorescence. SWCNTs were found to reduce the background signal and improve the analytical sensitivity. A linear relationship between the fluorescence intensity and the concentration of mercury(II) ion was observed in the range of 20-1250 nM (R = 0.9985) with a detection limit of 7.9 nM. The proposed method was applied to detect mercury(II) ion in tap water samples with good results.


Asunto(s)
Colorantes Fluorescentes/química , Mercurio/análisis , Nanotubos de Carbono/química , Espectrometría de Fluorescencia/métodos , Contaminantes Químicos del Agua/análisis , Benzotiazoles , ADN de Cadena Simple/química , Diaminas , Iones/química , Compuestos Orgánicos/química , Quinolinas , Timina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...