Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6567, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39095366

RESUMEN

Room-temperature elastocaloric cooling is considered as a zero-global-warming-potential alternative to conventional vapor-compression refrigeration technology. However, the limited entropy and large-deformation features of elastocaloric polymers hinder the creation of the breakthrough in their caloric responses and device development. Herein, we report that the addition of a small amount of inorganic nanofillers into the polymer induces the aggregate of the effective elastic chains via shearing the interlaminar molecular chains, which provides an additional contribution to the entropy in elastocaloric polymers. Consequently, the adiabatic temperature change of -18.0 K and the isothermal entropy change of 187.4 J kg-1 K-1 achieved in the polymer nanocomposites outperform those of current elastocaloric polymers. Moreover, a large-deformation cooling system with a work recovery efficiency of 56.3% is demonstrated. This work opens a new avenue for the development of high-performance elastocaloric polymers and prototypes for solid-state cooling applications.

2.
Sci Total Environ ; 949: 175009, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053533

RESUMEN

The heavy metals (HMs) spatial distribution in soil is intricately shaped by aggregation processes involving chemical reactions and biological activities, which modulate HMs toxicity, migration, and accumulation. Pioneer plants play a central role in preventing HMs at source, yet the precise mechanisms underlying their involvement in soil aggregation remain unclear. This study investigates HMs distribution within rhizosphere and bulk soil aggregates of Miscanthus sp. grown in tailings to elucidate the impact of root exudates (REs) and rhizosphere microbes. The results indicate that Miscanthus sp. enhance soil stability, increasing the proportion of macroaggregates by 4.06 %-9.78 %. HMs tend to concentrate in coarse-aggregates, particularly within rhizosphere environments, while diminishing in fine-aggregates. Under HMs stress, lipids and lipid-like molecules are the most abundant REs produced by Miscanthus sp., accounting for under up to 26.74 %. These REs form complex with HMs, promoting microaggregates formation. Charged components such as sugars and amino acids further contribute to soil aggregation. REs also regulates rhizosphere bacteria and fungi, with Acidobacteriota, Chloroflexi were the dominant bacterial phyla, while Ascomycota and Basidiomycota dominate the fungal community. The synergistic effect of REs and microorganisms impact soil organic matter and nutrient content, facilitating HMs nanoparticle heteroaggregation and macroaggregates formation. Consequently, soil structure and REs shape the distribution of HMs in soil aggregation. Pioneer plants mediate REs interaction with rhizosphere microbes, promoting the distribution of HMs into macroaggregates, leading to immobilization. This study sheds light on the role of pioneer plants in regulating soil HMs, offering valuable insights for soil remediation strategies.


Asunto(s)
Metales Pesados , Microbiota , Raíces de Plantas , Poaceae , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/metabolismo , Raíces de Plantas/microbiología , Suelo/química , Exudados de Plantas , Bacterias
3.
Environ Sci Pollut Res Int ; 26(30): 31243-31253, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31468351

RESUMEN

Fertilization and straw return have been widely adopted to maintain soil fertility and increase crop yields, but their long-term impacts on the accumulation and availability of cadmium (Cd) in paddy soils are still unconfirmed. Therefore, this study was undertaken in central China to investigate the accumulation, availability, and subsequent uptake of Cd by rice (Oryza sativa L.) in two adjacent field trials (P1 and P2, lasting for 10 and 12 years, respectively) under long-term straw return or in combination with chemical fertilizers. Obvious Cd accumulation, probably due to the notable Cd input from irrigation and traffic exhaust in the bulk soil (0-20 cm) of P1, was observed. The bulk soil of P2 received homogeneous straw return and chemical fertilizers, as did that of P1; however, the P2 soil almost showed Cd balance. Long-term straw return increased the portion of soil DTPA-extractable Cd to the total pool for both sites, but only P1 showed significant differences when compared to the controls. However, the highest Cd concentrations and the maximum bioconcentration factors in rice straw and grain were obtained using solo application of chemical fertilizers at both sites. Continuous additional applications of crop straw, in contrast, resulted in slightly decreased Cd uptake in rice straw, but not in grain. These findings demonstrate that neither long-term straw return nor fertilization leads directly to notable Cd accumulation, but that the promotion effects of long-term chemical fertilizer applications on Cd uptake in rice need more attention.


Asunto(s)
Cadmio/farmacocinética , Fertilizantes , Oryza/efectos de los fármacos , Suelo/química , Cadmio/análisis , China , Concentración de Iones de Hidrógeno , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Tallos de la Planta , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...