Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochem J ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38014500

RESUMEN

MASH is a prevalent liver disease that can progress to fibrosis, cirrhosis, hepatocellular carcinoma (HCC), and ultimately death, but there are no approved therapies. Leukotriene B4 (LTB4) is a potent pro-inflammatory chemoattractant that drives macrophage and neutrophil chemotaxis, and genetic loss or inhibition of its high affinity receptor, leukotriene B4 receptor 1 (BLT1), results in improved insulin sensitivity and decreased hepatic steatosis. To validate the therapeutic efficacy of BLT1 inhibition in an inflammatory and pro-fibrotic mouse model of MASH and fibrosis, mice were challenged with a choline-deficient, L-amino acid defined high fat diet and treated with a BLT1 antagonist at 30 or 90 mg/kg for 8 weeks. Liver function, histology, and gene expression were evaluated at the end of the study. Treatment with the BLT1 antagonist significantly reduced plasma lipids and liver steatosis but had no impact on liver injury biomarkers or histological endpoints such as inflammation, ballooning, or fibrosis compared to control. Artificial intelligence-powered digital pathology analysis revealed a significant reduction in steatosis co-localized fibrosis in livers treated with the BLT1 antagonist. Liver RNA-seq and pathway analyses revealed significant changes in fatty acid, arachidonic acid, and eicosanoid metabolic pathways with BLT1 antagonist treatment, however, these changes were not sufficient to impact inflammation and fibrosis endpoints. Targeting this LTB4-BLT1 axis with a small molecule inhibitor in animal models of chronic liver disease should be considered with caution, and additional studies are warranted to understand the mechanistic nuances of BLT1 inhibition in the context of MASH and liver fibrosis.

2.
Front Cardiovasc Med ; 10: 1096884, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283579

RESUMEN

Scalable and high-throughput electrophysiological measurement systems are necessary to accelerate the elucidation of cardiac diseases in drug development. Optical mapping is the primary method of simultaneously measuring several key electrophysiological parameters, such as action potentials, intracellular free calcium and conduction velocity, at high spatiotemporal resolution. This tool has been applied to isolated whole-hearts, whole-hearts in-vivo, tissue-slices and cardiac monolayers/tissue-constructs. Although optical mapping of all of these substrates have contributed to our understanding of ion-channels and fibrillation dynamics, cardiac monolayers/tissue-constructs are scalable macroscopic substrates that are particularly amenable to high-throughput interrogation. Here, we describe and validate a scalable and fully-automated monolayer optical mapping robot that requires no human intervention and with reasonable costs. As a proof-of-principle demonstration, we performed parallelized macroscopic optical mapping of calcium dynamics in the well-established neonatal-rat-ventricular-myocyte monolayer plated on standard 35 mm dishes. Given the advancements in regenerative and personalized medicine, we also performed parallelized macroscopic optical mapping of voltage dynamics in human pluripotent stem cell-derived cardiomyocyte monolayers using a genetically encoded voltage indictor and a commonly-used voltage sensitive dye to demonstrate the versatility of our system.

3.
Am J Clin Nutr ; 110(6): 1316-1326, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553429

RESUMEN

BACKGROUND: Three-dimensional optical (3DO) body scanning has been proposed for automatic anthropometry. However, conventional measurements fail to capture detailed body shape. More sophisticated shape features could better indicate health status. OBJECTIVES: The objectives were to predict DXA total and regional body composition, serum lipid and diabetes markers, and functional strength from 3DO body scans using statistical shape modeling. METHODS: Healthy adults underwent whole-body 3DO and DXA scans, blood tests, and strength assessments in the Shape Up! Adults cross-sectional observational study. Principal component analysis was performed on registered 3DO scans. Stepwise linear regressions were performed to estimate body composition, serum biomarkers, and strength using 3DO principal components (PCs). 3DO model accuracy was compared with simple anthropometric models and precision was compared with DXA. RESULTS: This analysis included 407 subjects. Eleven PCs for each sex captured 95% of body shape variance. 3DO body composition accuracy to DXA was: fat mass R2 = 0.88 male, 0.93 female; visceral fat mass R2 = 0.67 male, 0.75 female. 3DO body fat test-retest precision was: root mean squared error = 0.81 kg male, 0.66 kg female. 3DO visceral fat was as precise (%CV = 7.4 for males, 6.8 for females) as DXA (%CV = 6.8 for males, 7.4 for females). Multiple 3DO PCs were significantly correlated with serum HDL cholesterol, triglycerides, glucose, insulin, and HOMA-IR, independent of simple anthropometrics. 3DO PCs improved prediction of isometric knee strength (combined model R2 = 0.67 male, 0.59 female; anthropometrics-only model R2 = 0.34 male, 0.24 female). CONCLUSIONS: 3DO body shape PCs predict body composition with good accuracy and precision comparable to existing methods. 3DO PCs improve prediction of serum lipid and diabetes markers, and functional strength measurements. The safety and accessibility of 3DO scanning make it appropriate for monitoring individual body composition, and metabolic health and functional strength in epidemiological settings.This trial was registered at clinicaltrials.gov as NCT03637855.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Composición Corporal , Rodilla/fisiología , Absorciometría de Fotón , Adolescente , Adulto , Antropometría , Estudios Transversales , Femenino , Humanos , Imagenología Tridimensional , Insulina/sangre , Lipoproteínas HDL/sangre , Masculino , Persona de Mediana Edad , Triglicéridos/sangre , Adulto Joven
4.
Environ Toxicol Pharmacol ; 71: 103214, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31252312

RESUMEN

Lipololysaccharides (LPS) can disrupt the gut barrier. How dose LPS affects the immune performance of mesenteric lymph nodes? The results showed the hematological parameters significantly changed after LPS treatment. The length of intestinal villus was shortened and the depth of crypts was deepened, especially on the ileum. After LPS treatment 6 h, 12 h, the number of CD3+ T cells and CD4/CD8 in the mesenteric lymph nodes of ileum were reduced significantly; the levels of IFN-γ, TNF-ɑ and IL-2 were significantly decreased, and the levels of IL-6 and IL-10 were significantly increased in the ileum. The content of sIgA in the ileum was significantly decreased after LPS treatment 3 h, 6 h and was increased after LPS treatment 12 h. LPS through mesenteric lymph nodes, which induces the immune function reduced and the ileum injured obviously after treatment 6 h. Furthermore, the performance of intestinal immune performance was the lowest after LPS treatment 6 h.


Asunto(s)
Citocinas/metabolismo , Endotoxinas/toxicidad , Inmunidad Mucosa/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Ganglios Linfáticos/efectos de los fármacos , Subgrupos de Linfocitos T/efectos de los fármacos , Animales , Citocinas/sangre , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Intestino Delgado/efectos de los fármacos , Intestino Delgado/inmunología , Intestino Delgado/patología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Ratones Endogámicos , Subgrupos de Linfocitos T/inmunología
5.
Am J Physiol Endocrinol Metab ; 316(5): E695-E706, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753114

RESUMEN

Insulin-stimulated glucose uptake (GU) by skeletal muscle is enhanced several hours after acute exercise in rats with normal or reduced insulin sensitivity. Skeletal muscle is composed of multiple fiber types, but exercise's effect on fiber type-specific insulin-stimulated GU in insulin-resistant muscle was previously unknown. Male rats were fed a high-fat diet (HFD; 2 wk) and were either sedentary (SED) or exercised (2-h exercise). Other, low-fat diet-fed (LFD) rats remained SED. Rats were studied immediately postexercise (IPEX) or 3 h postexercise (3hPEX). Epitrochlearis muscles from IPEX rats were incubated in 2-deoxy-[3H]glucose (2-[3H]DG) without insulin. Epitrochlearis muscles from 3hPEX rats were incubated with 2-[3H]DG ± 100 µU/ml insulin. After single fiber isolation, GU and fiber type were determined. Glycogen and lipid droplets (LDs) were assessed histochemically. GLUT4 abundance was determined by immunoblotting. In HFD-SED vs. LFD-SED rats, insulin-stimulated GU was decreased in type IIB, IIX, IIAX, and IIBX fibers. Insulin-independent GU IPEX was increased and glycogen content was decreased in all fiber types (types I, IIA, IIB, IIX, IIAX, and IIBX). Exercise by HFD-fed rats enhanced insulin-stimulated GU in all fiber types except type I. Single fiber analyses enabled discovery of striking fiber type-specific differences in HFD and exercise effects on insulin-stimulated GU. The fiber type-specific differences in insulin-stimulated GU postexercise in insulin-resistant muscle were not attributable to a lack of fiber recruitment, as indirectly evidenced by insulin-independent GU and glycogen IPEX, differences in multiple LD indexes, or altered GLUT4 abundance, implicating fiber type-selective differences in the cellular processes responsible for postexercise enhancement of insulin-mediated GLUT4 translocation.


Asunto(s)
Glucosa/metabolismo , Resistencia a la Insulina , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Animales , Dieta Alta en Grasa , Transportador de Glucosa de Tipo 4/metabolismo , Glucógeno/metabolismo , Insulina/farmacología , Gotas Lipídicas/metabolismo , Masculino , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Ratas , Ratas Wistar , Conducta Sedentaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA