Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Entomol ; 40(3): 648-53, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22251643

RESUMEN

Bronze birch borer (Agrilus anxius Gory) is the key pest of birches (Betula spp.) in North America, several of which have been recommended for ornamental landscapes based on anecdotal reports of borer resistance that had not been confirmed experimentally. In a 20-yr common garden experiment initiated in 1979 in Ohio, North American birch species, including paper birch (Betula papyrifera Marshall), 'Whitespire' gray birch (Betula populifolia Marshall), and river birch (Betula nigra L.), were much more resistant to bronze birch borer than species indigenous to Europe and Asia, including European white birch (Betula pendula Roth), downy birch (Betula pubescens Ehrh.), monarch birch (Betula maximowicziana Regel), and Szechuan white birch (Betula szechuanica Jansson). Within 8 yr of planting, every European white, downy, and Szechuan birch had been colonized and killed, although 100% of monarch birch had been colonized and 88% of these plants were killed after nine years. Conversely, 97% of river birch, 76% of paper birch, and 73% Whitespire gray birch were alive 20 yr after planting, and river birch showed no evidence of colonization. This pattern is consistent with biogeographic theory of plant defense: North American birch species that share a coevolutionary history with bronze birch borer were much more resistant than naïve hosts endemic to Europe and Asia, possibly by virtue of evolution of targeted defenses. This information suggests that if bronze birch borer were introduced to Europe or Asia, it could threaten its hosts there on a continental scale. This study also exposed limitations of anecdotal observation as evidence of host plant resistance.


Asunto(s)
Betula/parasitología , Escarabajos/fisiología , Especificidad del Huésped , Animales , Asia , Europa (Continente) , América del Norte
2.
J Econ Entomol ; 103(4): 1187-95, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20857727

RESUMEN

In 2007, we surveyed the alien and endemic scolytine (bark and ambrosia beetles) fauna of northeastern Ohio, and for the most abundant species, we characterized their seasonal activity and response to three semiochemical baits. In total ,5,339 scolytine beetles represented by 47 species and 29 genera were caught in Lindgren funnel traps. Three species constituted 57% of the total catch, including Xylosandrus germanus (Blandford), Tomicus piniperda (L.), and Dryocoetes autographus (Ratzeburg). Of the total captured, 32% of the species and approximately 60% of the individuals were exotic, suggesting that exotic species numerically dominate the scolytine fauna in some urban areas. More native and exotic species were caught in traps baited with ethanol alone than in traps baited with other lures. However, significantly more individuals, especially of T. piniperda, D. autographus, Gnathotrichus materiarius (Fitch), and Ips grandicollis (Eichhoff), and species were caught in traps baited with ethanol plus alpha-pinene than in traps baited with ethanol alone or the exotic Ips lure. This suggests that among these baits, the ethanol plus alpha-pinene baits may be useful in maximizing scolytine beetle catches of these species within this region. Species diversity and richness for both native and exotic beetles was greatest in traps baited with ethanol alone. The period of peak trap capture varied depending upon species: X. germanus was most abundant in traps in mid-May and early-August; T. piniperda in mid-May; D. autographus in early June, mid-July, and mid-September; Anisandrus sayi Hopkins and G. materiarius in mid-May, mid-July, and early September; and I. grandicollis in early April, mid-July, and late September.


Asunto(s)
Escarabajos/fisiología , Feromonas/fisiología , Animales , Demografía , Ohio , Estaciones del Año , Especificidad de la Especie , Factores de Tiempo
3.
Virol J ; 6: 211, 2009 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19941667

RESUMEN

The World Health Organization (WHO) estimates that there are over 50 million cases of dengue fever reported annually and approximately 2.5 billion people are at risk. Mild dengue fever presents with headache, fever, rash, myalgia, osteogenic pain, and lethargy. Severe disease can manifest as dengue shock syndrome (DSS) or dengue hemorrhagic fever (DHF). Symptoms of DSS/DHF are leukopenia, low blood volume and pressure encephalitis, cold and sweaty skin, gastrointestinal bleeding, and spontaneous bleeding from gums and nose. Currently, there are no therapeutics available beyond supportive care and untreated complicated dengue fever can have a 50% mortality rate. According to WHO DSS/DHF is the leading cause of childhood mortality in some Asian countries. Dendritic cells are professional antigen presenting cells that are primary targets in a dengue infection. Dengue binds to Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN). DC-SIGN has a high affinity for ICAM3 which is expressed in activating T-cells. Previous studies have demonstrated an altered T-cell phenotype expressed in dengue infected patients that could be potentially mediated by dengue-infected DCs.Dengue is enhanced by three interacting components of the immune system. Dengue begins by infecting dendritic cells which in immature dendritic cells is mediated by DC-SIGN. In mature dendritic cells, antibodies can enhance dengue infection via Fc receptors. Downstream of dendritic cells T-cells become activated and generate the very cytokines implicated in vascular leak and shock in addition to activating effector cells. Both the virus and the antibodies are involved in release of complement and anaphylatoxins which can cause or exacerbate DHF/DSS. These systems are inextricable and strongly associated with dengue pathogenesis.


Asunto(s)
Virus del Dengue/inmunología , Virus del Dengue/patogenicidad , Dengue/inmunología , Dengue/patología , Anticuerpos Antivirales/sangre , Acrecentamiento Dependiente de Anticuerpo , Moléculas de Adhesión Celular/inmunología , Citocinas/metabolismo , Células Dendríticas/inmunología , Dengue/epidemiología , Humanos , Lectinas Tipo C/inmunología , Receptores de Superficie Celular/inmunología , Choque , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...