Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17090, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273483

RESUMEN

Microalgae are the main source of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most marine and terrestrial fauna including humans. Inverse correlations of algal EPA and DHA proportions (% of total fatty acids) with temperature have led to suggestions of a warming-induced decline in the global production of these biomolecules and an enhanced importance of high latitude organisms for their provision. The cold Arctic Ocean is a potential hotspot of EPA and DHA production, but consequences of global warming are unknown. Here, we combine a full-seasonal EPA and DHA dataset from the Central Arctic Ocean (CAO), with results from 13 previous field studies and 32 cultured algal strains to examine five potential climate change effects; ice algae loss, community shifts, increase in light, nutrients, and temperature. The algal EPA and DHA proportions were lower in the ice-covered CAO than in warmer peripheral shelf seas, which indicates that the paradigm of an inverse correlation of EPA and DHA proportions with temperature may not hold in the Arctic. We found no systematic differences in the summed EPA and DHA proportions of sea ice versus pelagic algae, and in diatoms versus non-diatoms. Overall, the algal EPA and DHA proportions varied up to four-fold seasonally and 10-fold regionally, pointing to strong light and nutrient limitations in the CAO. Where these limitations ease in a warming Arctic, EPA and DHA proportions are likely to increase alongside increasing primary production, with nutritional benefits for a non-ice-associated food web.


Asunto(s)
Diatomeas , Ácidos Grasos Omega-3 , Humanos , Cubierta de Hielo , Océanos y Mares , Regiones Árticas , Ácidos Grasos
2.
Glob Chang Biol ; 29(15): 4212-4233, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37058084

RESUMEN

The Pacific Arctic marine ecosystem has undergone rapid changes in recent years due to ocean warming, sea ice loss, and increased northward transport of Pacific-origin waters into the Arctic. These climate-mediated changes have been linked to range shifts of juvenile and adult subarctic (boreal) and Arctic fish populations, though it is unclear whether distributional changes are also occurring during the early life stages. We analyzed larval fish abundance and distribution data sampled in late summer from 2010 to 2019 in two interconnected Pacific Arctic ecosystems: the northern Bering Sea and Chukchi Sea, to determine whether recent warming and loss of sea ice has restricted habitat for Arctic species and altered larval fish assemblage composition from Arctic- to boreal-associated taxa. Multivariate analyses revealed the presence of three distinct multi-species assemblages across all years: (1) a boreal assemblage dominated by yellowfin sole (Limanda aspera), capelin (Mallotus catervarius), and walleye pollock (Gadus chalcogrammus); (2) an Arctic assemblage composed of Arctic cod (Boreogadus saida) and other common Arctic species; and (3) a mixed assemblage composed of the dominant species from the other two assemblages. We found that the wind- and current-driven northward advection of warmer, subarctic waters and the unprecedented low-ice conditions observed in the northern Bering and Chukchi seas beginning in 2017 and persisting into 2018 and 2019 have precipitated community-wide shifts, with the boreal larval fish assemblage expanding northward and offshore and the Arctic assemblage retreating poleward. We conclude that Arctic warming is most significantly driving changes in abundance at the leading and trailing edges of the Chukchi Sea larval fish community as boreal species increase in abundance and Arctic species decline. Our analyses document how quickly larval fish assemblages respond to environmental change and reveal that the impacts of Arctic borealization on fish community composition spans multiple life stages over large spatial scales.


Asunto(s)
Ecosistema , Gadiformes , Animales , Larva , Peces/fisiología , Océanos y Mares , Regiones Árticas
3.
Glob Chang Biol ; 27(3): 506-520, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33107157

RESUMEN

The effects of climate warming on ecosystem dynamics are widespread throughout the world's oceans. In the Northeast Pacific, large-scale climate patterns such as the El Niño/Southern Oscillation and Pacific Decadal Oscillation, and recently unprecedented warm ocean conditions from 2014 to 2016, referred to as a marine heatwave (MHW), resulted in large-scale ecosystem changes. Larval fishes quickly respond to environmental variability and are sensitive indicators of ecosystem change. Categorizing ichthyoplankton dynamics across marine ecosystem in the Northeast Pacific can help elucidate the magnitude of assemblage shifts, and whether responses are synchronous or alternatively governed by local responses to regional oceanographic conditions. We analyzed time-series data of ichthyoplankton abundances from four ecoregions in the Northeast Pacific ranging from subarctic to subtropical: the Gulf of Alaska (1981-2017), British Columbia (2001-2017), Oregon (1998-2017), and the southern California Current (1981-2017). We assessed the impact of the recent (2014-2016) MHW and how ichthyoplankton assemblages responded to past major climate perturbations since 1981 in these ecosystems. Our results indicate that the MHW caused widespread changes in the ichthyoplankton fauna along the coast of the Northeast Pacific Ocean, but impacts differed between marine ecosystems. For example, abundances for most dominant taxa were at all-time lows since the beginning of sampling in the Gulf of Alaska and British Columbia, while in Oregon and the southern California Current species richness increased as did abundances of species associated with warmer waters. Lastly, species associated with cold waters also increased in abundances close to shore in southern California during the MHW, a pattern that was distinctly different from previous El Niño events. We also found several large-scale, synchronized ichthyoplankton assemblage composition shifts during past major climate events. Current climate projections suggest that MHWs will become more intense and thus our findings can help project future changes in larval dynamics, allowing for improved ecosystem management decisions.


Asunto(s)
Ecosistema , Alaska , Animales , Colombia Británica , Océanos y Mares , Oregon , Océano Pacífico
4.
Philos Trans R Soc Lond B Biol Sci ; 375(1804): 20190652, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32536314

RESUMEN

Compound-specific isotope analyses (CSIA) of fatty acids (FA) constitute a promising tool for tracing energy flows in food-webs. However, past applications of FA-specific carbon isotope analyses have been restricted to a relatively coarse food-source separation and mainly quantified dietary contributions from different habitats. Our aim was to evaluate the potential of FA-CSIA to provide high-resolution data on within-system energy flows using algae and zooplankton as model organisms. First, we investigated the power of FA-CSIA to distinguish among four different algae groups, namely cyanobacteria, chlorophytes, haptophytes and diatoms. We found substantial within-group variation but also demonstrated that δ13C of several FA (e.g. 18:3ω3 or 18:4ω3) differed among taxa, resulting in group-specific isotopic fingerprints. Second, we assessed changes in FA isotope ratios with trophic transfer. Isotope fractionation was highly variable in daphnids and rotifers exposed to different food sources. Only δ13C of nutritionally valuable poly-unsaturated FA remained relatively constant, highlighting their potential as dietary tracers. The variability in fractionation was partly driven by the identity of food sources. Such systematic effects likely reflect the impact of dietary quality on consumers' metabolism and suggest that FA isotopes could be useful nutritional indicators in the field. Overall, our results reveal that the variability of FA isotope ratios provides a substantial challenge, but that FA-CSIA nevertheless have several promising applications in food-web ecology. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.


Asunto(s)
Organismos Acuáticos/química , Isótopos de Carbono/análisis , Ácidos Grasos/análisis , Cadena Alimentaria , Animales , Chlorophyta/química , Copépodos/química , Cianobacterias/química , Diatomeas/química , Haptophyta/química , Rotíferos/química
5.
Oecologia ; 192(2): 515-527, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31950262

RESUMEN

Biodiversity loss and climate warming are occurring in concert, with potentially profound impacts on ecosystem functioning. We currently know very little about the combined effects of these changes on the links between the community structure, dynamics and the resulting in situ CO2 concentrations in freshwater ecosystems. Here we aimed to determine both individual and combined effects of temperature and non-resource diversity (species inedible for a given consumer) on CO2 concentration. Our analysis further aimed to establish both direct effects on CO2 concentrations and potential indirect effects that occur via changes to the phytoplankton and zooplankton biomasses. Our results showed that there were no interactive effects of changes in temperature and diversity on CO2 concentration in the water. Instead, independent increases in either temperature or non-resource diversity resulted in a substantial reduction in CO2 concentrations, particularly at the highest non-resource diversity. The effects of non-resource diversity and warming on CO2 were indirect, resulting largely from the positive impacts on total biomass of primary producers. Our study is the first to experimentally partition the impacts of temperature and diversity on the consumer-resource dynamics and associated changes to CO2 concentrations. It provides new mechanistic insights into the role of diverse plankton communities for ecosystem functioning and their importance in regulating CO2 dynamics under ongoing climate warming.


Asunto(s)
Dióxido de Carbono , Ecosistema , Animales , Biodiversidad , Biomasa , Agua Dulce , Temperatura , Zooplancton
6.
Ecol Lett ; 19(11): 1389-1391, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27634214

RESUMEN

A recent study concluded that omnivorous plankton will shift from predatory to herbivorous feeding with climate warming, as consumers require increased carbon:phosphorous in their food. Although this is an appealing hypothesis, we suggest the conclusion is unfounded, based on the data presented, which seem in places questionable and poorly interpreted.


Asunto(s)
Copépodos/fisiología , Conducta Alimentaria/fisiología , Cadena Alimentaria , Calor , Animales , Cambio Climático , Preferencias Alimentarias
7.
Oecologia ; 178(3): 631-42, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25843809

RESUMEN

Estimating trophic structures is a common approach used to retrieve information regarding energy pathways, predation, and competition in complex ecosystems. The application of amino acid (AA) compound-specific nitrogen (N) isotope analysis (CSIA) is a relatively new method used to estimate trophic position (TP) and feeding relationships in diverse organisms. Here, we conducted the first meta-analysis of δ(15)N AA values from measurements of 359 marine species covering four trophic levels, and compared TP estimates from AA-CSIA to literature values derived from food items, gut or stomach content analysis. We tested whether the AA trophic enrichment factor (TEF), or the (15)N enrichment among different individual AAs is constant across trophic levels and whether inclusion of δ(15)N values from multiple AAs improves TP estimation. For the TEF of glutamic acid relative to phenylalanine (Phe) we found an average value of 6.6‰ across all taxa, which is significantly lower than the commonly applied 7.6‰. We found that organism feeding ecology influences TEF values of several trophic AAs relative to Phe, with significantly higher TEF values for herbivores compared to omnivores and carnivores, while TEF values were also significantly lower for animals excreting urea compared to ammonium. Based on the comparison of multiple model structures using the metadata of δ(15)N AA values we show that increasing the number of AAs in principle improves precision in TP estimation. This meta-analysis clarifies the advantages and limitations of using individual δ(15)N AA values as tools in trophic ecology and provides a guideline for the future application of AA-CSIA to food web studies.


Asunto(s)
Aminoácidos/metabolismo , Organismos Acuáticos/metabolismo , Ecosistema , Cadena Alimentaria , Aminoácidos/análisis , Animales , Contenido Digestivo/química , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Conducta Predatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...