Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 74(1): 118-129, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36227010

RESUMEN

Encasements formed around haustoria and biotrophic hyphae as well as hypersensitive reaction (HR) cell death are essential plant immune responses to filamentous pathogens. In this study we examine the components that may contribute to the absence of these responses in susceptible barley attacked by the powdery mildew fungus. We find that the effector CSEP0162 from this pathogen targets plant MONENSIN SENSITIVITY1 (MON1), which is important for the fusion of multivesicular bodies to their target membranes. Overexpression of CSEP0162 and silencing of barley MON1 both inhibit encasement formation. We find that the Arabidopsis ecotype No-0 has resistance to powdery mildew, and that this is partially dependent on MON1. Surprisingly, we find the MON1-dependent resistance in No-0 not only includes an encasement response, but also an effective HR. Similarly, silencing of MON1 in barley also blocks Mla3-mediated HR-based powdery mildew resistance. Our results indicate that MON1 is a vital plant immunity component, and we speculate that the barley powdery mildew fungus introduces the effector CSEP0162 to target MON1 and hence reduce encasement formation and HR.


Asunto(s)
Arabidopsis , Ascomicetos , Hordeum , Ascomicetos/fisiología , Hordeum/genética , Hordeum/metabolismo , Monensina/metabolismo , Inmunidad de la Planta , Arabidopsis/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Signal Behav ; 17(1): 2084278, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35695087

RESUMEN

Plant innate immunity toward cell-wall penetrating filamentous pathogens relies on the conserved SYP12 clade of secretory syntaxins. In Arabidopsis, the two closely related SYP12 clade members, PEN1 and SYP122, play an overlapping role in this general immunity, which can be complemented by two SYP12 clade members from Marchantia (MpSYP12A and MpSYP12B). However, in addition to the conserved SYP12 clade function, PEN1 alone mediates pre-invasive immunity toward powdery mildew fungi, which likely reflects a specialization of its functionality. Here, we show that the PEN1-specific specialization in immunity correlates with a continuous BFA-sensitive recycling and the ability to accumulate strongly at the growing cell plate. This contrasts with the behavior of SYP122, MpSYP12A, and MpSYP12B, all being more stable at the plasma membrane. We suggest that the highly mobile SYP12 specialization observed for PEN1 is required for a fast pre-invasive immune response to resist attack from powdery mildew fungi.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ascomicetos/fisiología , Pared Celular/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo
3.
Elife ; 112022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119361

RESUMEN

Filamentous fungal and oomycete plant pathogens that invade by direct penetration through the leaf epidermal cell wall cause devastating plant diseases. Plant preinvasive immunity toward nonadapted filamentous pathogens is highly effective and durable. Pre- and postinvasive immunity correlates with the formation of evolutionarily conserved and cell-autonomous cell wall structures, named papillae and encasements, respectively. Yet, it is still unresolved how papillae/encasements are formed and whether these defense structures prevent pathogen ingress. Here, we show that in Arabidopsis the two closely related members of the SYP12 clade of syntaxins (PEN1 and SYP122) are indispensable for the formation of papillae and encasements. Moreover, loss-of-function mutants were hampered in preinvasive immunity toward a range of phylogenetically distant nonadapted filamentous pathogens, underlining the versatility and efficacy of this defense. Complementation studies using SYP12s from the early diverging land plant, Marchantia polymorpha, showed that the SYP12 clade immunity function has survived 470 million years of independent evolution. These results suggest that ancestral land plants evolved the SYP12 clade to provide a broad and durable preinvasive immunity to facilitate their life on land and pave the way to a better understanding of how adapted pathogens overcome this ubiquitous plant defense strategy.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas Qa-SNARE/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Colletotrichum , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Predisposición Genética a la Enfermedad , Marchantia , Phytophthora infestans , Enfermedades de las Plantas/genética , Proteínas Qa-SNARE/genética
4.
Plant Cell ; 29(8): 1927-1937, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28808134

RESUMEN

Plant innate immunity can effectively prevent the proliferation of filamentous pathogens. Papilla formation at the site of attack is essential for preinvasive immunity; in postinvasive immunity, the encasement of pathogen structures inside host cells can hamper disease. Whereas papillae are highly dependent on transcytosis of premade material, little is known about encasement formation. Here, we show that endosome-associated VPS9a, the conserved guanine-nucleotide exchange factor activating Rab5 GTPases, is required for both pre- and postinvasive immunity against a nonadapted powdery mildew fungus (Blumeria graminis f. sp hordei) in Arabidopsis thaliana Surprisingly, VPS9a acts in addition to two previously well-described innate immunity components and thus represents an additional step in the regulation of how plants resist pathogens. We found VPS9a to be important for delivering membrane material to the encasement and VPS9a also plays a predominant role in postinvasive immunity. GTP-bound Rab5 GTPases accumulate in the encasement, but not the papillae, suggesting that two independent pathways form these defense structures. VPS9a also mediates defense to an adapted powdery mildew fungus, thus regulating a durable type of defense that works in both host and nonhost resistance. We propose that VPS9a plays a conserved role in organizing cellular endomembrane trafficking, required for delivery of defense components in response to powdery mildew fungi.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Inmunidad Innata , Inmunidad de la Planta , Proteínas de Unión al GTP rab/metabolismo , Arabidopsis/metabolismo , Ascomicetos/fisiología , Membrana Celular/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Biológicos , Mutación/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología
5.
Plant Cell ; 22(11): 3831-44, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21057060

RESUMEN

Host cell vesicle traffic is essential for the interplay between plants and microbes. ADP-ribosylation factor (ARF) GTPases are required for vesicle budding, and we studied the role of these enzymes to identify important vesicle transport pathways in the plant-powdery mildew interaction. A combination of transient-induced gene silencing and transient expression of inactive forms of ARF GTPases provided evidence that barley (Hordeum vulgare) ARFA1b/1c function is important for preinvasive penetration resistance against powdery mildew, manifested by formation of a cell wall apposition, named a papilla. Mutant studies indicated that the plasma membrane-localized REQUIRED FOR MLO-SPECIFIED RESISTANCE2 (ROR2) syntaxin, also important for penetration resistance, and ARFA1b/1c function in the same vesicle transport pathway. This was substantiated by a requirement of ARFA1b/1c for ROR2 accumulation in the papilla. ARFA1b/1c is localized to multivesicular bodies, providing a functional link between ROR2 and these organelles in penetration resistance. During Blumeria graminis f sp hordei penetration attempts, ARFA1b/1c-positive multivesicular bodies assemble near the penetration site hours prior to the earliest detection of callose in papillae. Moreover, we showed that ARFA1b/1c is required for callose deposition in papillae and that the papilla structure is established independently of ARFA1b/1c. This raises the possibility that callose is loaded into papillae via multivesicular bodies, rather than being synthesized directly into this cell wall apposition.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Glucanos/metabolismo , Hordeum/inmunología , Cuerpos Multivesiculares/enzimología , Proteínas de Plantas/metabolismo , Proteínas Qa-SNARE/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Factores de Ribosilacion-ADP/clasificación , Factores de Ribosilacion-ADP/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Endosomas/metabolismo , Silenciador del Gen , Hordeum/anatomía & histología , Hordeum/microbiología , Filogenia , Enfermedades de las Plantas/inmunología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/enzimología , Proteínas de Plantas/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
6.
Mol Plant ; 1(3): 510-27, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-19825557

RESUMEN

The lesion-mimic Arabidopsis mutant, syp121 syp122, constitutively expresses the salicylic acid (SA) signaling pathway and has low penetration resistance to powdery mildew fungi. Genetic analyses of the lesion-mimic phenotype have expanded our understanding of programmed cell death (PCD) in plants. Inactivation of SA signaling genes in syp121 syp122 only partially rescues the lesion-mimic phenotype, indicating that additional defenses contribute to the PCD. Whole genome transcriptome analysis confirmed that SA-induced transcripts, as well as numerous other known pathogen-response transcripts, are up-regulated after inactivation of the syntaxin genes. A suppressor mutant analysis of syp121 syp122 revealed that FMO1, ALD1, and PAD4 are important for lesion development. Mutant alleles of EDS1, NDR1, RAR1, and SGT1b also partially rescued the lesion-mimic phenotype, suggesting that mutating syntaxin genes stimulates TIR-NB-LRR and CC-NB-LRR-type resistances. The syntaxin double knockout potentiated a powdery mildew-induced HR-like response. This required functional PAD4 but not functional SA signaling. However, SA signaling potentiated the PAD4-dependent HR-like response. Analyses of quadruple mutants suggest that EDS5 and SID2 confer separate SA-independent signaling functions, and that FMO1 and ALD1 mediate SA-independent signals that are NPR1-dependent. These studies highlight the contribution of multiple pathways to defense and point to the complexity of their interactions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Enfermedades de las Plantas/prevención & control , Proteínas Qa-SNARE/genética , Transducción de Señal/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Hidrolasas de Éster Carboxílico/genética , Proteínas Portadoras/fisiología , Proteínas de Ciclo Celular/fisiología , Ciclopentanos/farmacología , Proteínas de Unión al ADN/fisiología , Perfilación de la Expresión Génica , Variación Genética/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular , Mutación , Oxilipinas/farmacología , Fenotipo , Enfermedades de las Plantas/genética , Proteínas Qa-SNARE/fisiología , Transducción de Señal/efectos de los fármacos , Transaminasas/genética , Factores de Transcripción/fisiología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...