Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Insect Sci ; 4: 1334526, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469340

RESUMEN

The industrial rearing of the yellow mealworm (Tenebrio molitor) for feed and food purposes on agricultural by-products may expose larvae and adults to entomopathogens used as biocontrol agents in crop production. Bacterial spores/toxins or fungal conidia from species such as Bacillus thuringiensis or Metarhizium brunneum could affect the survival and growth of insects. Therefore, the aim of this study was to investigate the potential benefits of a wheat bran diet supplemented with probiotic bacteria and dried egg white on larval development and survival and its effects on the gut microbiome composition. Two probiotic bacterial species, Pediococcus pentosaceus KVL B19-01 and Lactiplantibacillus plantarum WJB, were added to wheat bran feed with and without dried egg white, as an additional protein source, directly from neonate larval hatching until reaching a body mass of 20 mg. Subsequently, larvae from the various diets were exposed for 72 h to B. thuringiensis, M. brunneum, or their combination. Larval survival and growth were recorded for 14 days, and the bacterial microbiota composition was analyzed using 16S rDNA sequencing prior to pathogen exposure and on days 3 and 11 after inoculation with the pathogens. The results showed increased survival for T. molitor larvae reared on feed supplemented with P. pentosaceus in the case of co-infection. Larval growth was also impacted in the co-infection treatment. No significant impact of egg white or of P. pentosaceus on larval growth was recorded, while the addition of Lb. plantarum resulted in a minor increase in individual mass gain compared with infected larvae without the latter probiotic. On day 14, B. thuringiensis was no longer detected and the overall bacterial community composition of the larvae was similar in all treatments. On the other hand, the relative operational taxonomic unit (OTU) abundance was dependent on day, diet, and probiotic. Interestingly, P. pentosaceus was present throughout the experiments, while Lb. plantarum was not found at a detectable level, although its transient presence slightly improved larval performance. Overall, this study confirms the potential benefits of some probiotics during the development of T. molitor while underlining the complexity of the relationship between the host and its microbiome.

2.
Front Insect Sci ; 3: 1260333, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38469511

RESUMEN

Understanding the intricate interplay between the gut microbiota and the immune response in insects is crucial, given its diverse impact on the pathogenesis of various microbial species. The microbiota's modulation of the host immune system is one such mechanism, although its complete impact on immune responses remains elusive. This study investigated the tripartite interaction between the gut microbiota, pathogens, and the host's response in Galleria mellonella larvae reared under axenic (sterile) and conventional (non-sterile) conditions. The influence of the microbiota on host fitness during infections was evaluated via two different routes: oral infection induced by Bacillus thuringiensis subsp. galleriae (Btg), and topical infection induced by Metarhizium robertsii (Mr). We observed that larvae without a microbiota can successfully fulfill their life cycle, albeit with more variation in their developmental time. We subsequently performed survival assays on final-instar larvae, using the median lethal dose (LD50) of Btg and Mr. Our findings indicated that axenic larvae were more vulnerable to an oral infection of Btg; specifically, a dose that was calculated to be half-lethal for the conventional group resulted in a 90%-100% mortality rate in the axenic group. Through a dual-analysis experimental design, we could identify the status of the gut microbiota using 16S rRNA sequencing and assess the level of immune-related gene expression in the same group of larvae at basal conditions and during infection. This analysis revealed that the microbiota of our conventionally reared population was dominated entirely by four Enterococcus species, and these species potentially stimulated the immune response in the gut, due to the increased basal expression of two antimicrobial peptides (AMPs)-gallerimycin and gloverin-in the conventional larvae compared with the axenic larvae. Furthermore, Enterococcus mundtii, isolated from the gut of conventional larvae, showed inhibition activity against Btg in vitro. Lastly, other immune effectors, namely, phenoloxidase activity in the hemolymph and total reactive oxygen/nitrogen species (ROS/RNS) in the gut, were tested to further investigate the extent of the stimulation of the microbiota on the immune response. These findings highlight the immune-modulatory role of the Enterococcus-dominated gut microbiota, an increasingly reported microbiota assemblage of laboratory populations of Lepidoptera, and its influence on the host's response to oral and topical infections.

3.
Insects ; 13(5)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35621793

RESUMEN

Industrial insect mass rearing aims to produce quality insects under safe sanitary conditions which can be compromised by pathogens and abiotic stressors. Therefore, knowledge on pathogen persistence, virulence and means of detection is of importance. This study focuses on the opportunistic pathogen Serratia marcescens (Sm) as a possible candidate to reveal sanitary issues in Tenebrio molitor (Tm) breeding. A screening test was performed to assess the impact of abiotic stressors (starvation, density and sieving) in presence and absence of Sm. Two Sm detection methods were conducted, and the kinetics of Sm persistence were investigated. Our results show that (i) the presence of Sm had a low but significant effect on Tm mortality, (ii) a short temporary starvation period had a negative impact on larval growth, (iii) the detection of Sm by q-PCR was sensitive but less convenient than a specific Sm growth media, (iv) the kinetics of persistence showed that Sm declined but survived for nine days in the feed and in the feces for three weeks. Both the relatively low virulence and the persistence in the environment suggest that Sm could be used as an indicator for the sanitary status of mealworm production.

4.
Environ Sci Technol ; 56(1): 525-534, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34932348

RESUMEN

Environmental pollution by the nearly nonbiodegradable polyethylene (PE) plastics is of major concern; thus, organisms capable of biodegrading PE are required. The larvae of the Greater Wax Moth, Galleria mellonella (Gm), were identified as a potential candidate to digest PE. In this study, we tested whether PE was metabolized by Gm larvae and could be found in their tissues. We examined the implication of the larval gut microbiota by using conventional and axenic reared insects. First, our study showed that neither beeswax nor LDPE alone favor the growth of young larvae. We then used Fourier transform infrared microspectroscopy (µFTIR) to detect deuterium in larvae fed with isotopically labeled food. Deuterated molecules were found in tissues of larvae fed with deuterium labeled oil for 24 and 72 h, proving that µFTIR can detect metabolization of 1 to 2 mg of deuterated food. Then, Gm larvae were fed with deuterated PE (821 kDa). No bioassimilation was detected in the tissues of larvae that had ingested 1 to 5 mg of deuterated PE in 72 h or in 19 days, but micrometer sized PE particles were found in the larval digestive tract cavities. We evidenced weak biodegradation of 641 kDa PE films in contact for 24 h with the dissected gut of conventional larvae and in the PED4 particles from excreted larval frass. Our study confirms that Gm larvae can biodegrade HDPE but cannot necessarily metabolize it.


Asunto(s)
Mariposas Nocturnas , Polietileno , Animales , Biodegradación Ambiental , Larva/metabolismo , Mariposas Nocturnas/metabolismo , Plásticos , Polietileno/metabolismo
5.
Virulence ; 12(1): 2104-2121, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34374318

RESUMEN

Bacillus cereus is a Gram-positive opportunistic pathogen closely related to the entomopathogen, Bacillus thuringiensis, both of which are involved in intestinal infections. Iron is an essential micronutrient for full growth and virulence of pathogens during infection. However, little is known about iron homeostasis during gut infection. Therefore, we aimed to assess the expression of B. cereus genes related to bacterial iron homeostasis, virulence and oxidative stress. The hypothesis is that the expression of such genes would vary between early and later stage colonization in correlation to gut cell damage. To perform the study, a germ-free Galleria mellonella model was set up in order to adapt the use of Laser-capture microdissection (LCM), to select precise areas in the gut lumen from frozen whole larval cryo-sections. Analyses were performed from alive larvae and the expression of targeted genes was assessed byspecific pre-amplification of mRNA followed by quantitative PCR. Firstly, the results reinforce the reliability of LCM, despite a low amount of bacterial RNA recovered. Secondly, bacterial genes involved in iron homeostasis are expressed in the lumen at both 3 and 16 hours post force-feeding. Thirdly, iron gene expression is slightly modulated during gut infection, and lastly, the mRNA of G. mellonella encoding for ferritin and transferrin iron storage and transport are recovered too. Therefore, iron homeostasis should play a role in B. cereus gut colonization. Furthermore, we demonstrate for the first time the value of using LCM for specific in situ gene expression analysis of extracellular bacteria in a whole animal.


Asunto(s)
Bacillus cereus , Hierro/metabolismo , Mariposas Nocturnas , Animales , Bacillus cereus/genética , Bacillus cereus/fisiología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Homeostasis , Larva , Captura por Microdisección con Láser , Mariposas Nocturnas/microbiología , ARN Mensajero , Reproducibilidad de los Resultados
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 258: 119841, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-33932634

RESUMEN

Due to massive production, inefficient waste collection, and long lives, plastics have become a source of persistent pollution. Biodegradation is explored as an environmentally friendly remediation method for removing plastics from the environment. Microbial and animal biodegradation methods have been reported in the literature for various plastics. Levels of plastic oxidation are often used as an evidence of degradation and can be measured with great sensitivity by Fourier Transform Infrared (FTIR) spectroscopy. FTIR is highly sensitive to the creation of new CO, CO and OH bonds during oxidation. However, many studies reporting the use of FTIR spectroscopy to evidence plastic oxidation confused the spectral signatures of biomass contamination (CO and CO from lipids, CONH from proteins, O-H from polysaccharides) with plastic oxidation. Here, based on spectra of oxidized plastic and of probable contaminants, we make recommendations for performing and analyzing FTIR measurements properly.


Asunto(s)
Plásticos , Animales , Biodegradación Ambiental , Biomasa , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier
7.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32680867

RESUMEN

Lactobacillus sakei is a nonpathogenic lactic acid bacterium and a natural inhabitant of meat ecosystems. Although red meat is a heme-rich environment, L. sakei does not need iron or heme for growth, although it possesses a heme-dependent catalase. Iron incorporation into L. sakei from myoglobin and hemoglobin was previously shown by microscopy and the L. sakei genome reveals the complete equipment for iron and heme transport. Here, we report the characterization of a five-gene cluster (from lsa1836 to lsa1840 [lsa1836-1840]) encoding a putative metal iron ABC transporter. Interestingly, this cluster, together with a heme-dependent catalase gene, is also conserved in other species from the meat ecosystem. Our bioinformatic analyses revealed that the locus might correspond to a complete machinery of an energy coupling factor (ECF) transport system. We quantified in vitro the intracellular heme in the wild type (WT) and in our Δlsa1836-1840 deletion mutant using an intracellular heme sensor and inductively coupled plasma mass spectrometry for quantifying incorporated 57Fe heme. We showed that in the WT L. sakei, heme accumulation occurs rapidly and massively in the presence of hemin, while the deletion mutant was impaired in heme uptake; this ability was restored by in trans complementation. Our results establish the main role of the L. sakei Lsa1836-1840 ECF-like system in heme uptake. Therefore, this research outcome sheds new light on other possible functions of ECF-like systems.IMPORTANCELactobacillus sakei is a nonpathogenic bacterial species exhibiting high fitness in heme-rich environments such as meat products, although it does not need iron or heme for growth. Heme capture and utilization capacities are often associated with pathogenic species and are considered virulence-associated factors in the infected hosts. For these reasons, iron acquisition systems have been deeply studied in such species, while for nonpathogenic bacteria the information is scarce. Genomic data revealed that several putative iron transporters are present in the genome of the lactic acid bacterium L. sakei In this study, we demonstrate that one of them is an ECF-like ABC transporter with a functional role in heme transport. Such evidence has not yet been brought for an ECF; therefore, our study reveals a new class of heme transport system.


Asunto(s)
Genes Bacterianos/genética , Hemo/metabolismo , Latilactobacillus sakei/genética , Familia de Multigenes/genética , Transporte Biológico/genética , Latilactobacillus sakei/metabolismo
8.
Toxins (Basel) ; 12(4)2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32294913

RESUMEN

Bacillus thuringiensis (Bt) is used for insect pest control, and its larvicidal activity is primarily attributed to Cry toxins. Other factors participate in infection, and limited information is available regarding factors acting on the peritrophic matrix (PM). This study aimed to investigate the role of a Bt chitin-binding protein (CBPA) that had been previously shown to be expressed at pH 9 in vitro and could therefore be expressed in the alkaline gut of lepidopteron larvae. A ∆cbpA mutant was generated that was 10-fold less virulent than wild-type Bt HD73 towards Ostrinia furnacalis neonate larvae, indicating its important role in infection. Purified recombinant Escherichia coli CBPA was shown to have a chitin affinity, thus indicating a possible interaction with the chitin-rich PM. A translational GFP-CBPA fusion elucidated the localization of CBPA on the bacterial surface, and the transcriptional activity of the promoter PcbpA was immediately induced and confirmed at pH 9. Next, in order to connect surface expression and possible in vivo gut activity, last instar Galleriamellonella (Gm) larvae (not susceptible to Bt HD-73) were used as a model to follow CBPA in gut expression, bacterial transit, and PM adhesion. CBPA-GFP was quickly expressed in the Gm gut lumen, and more Bt HD73 strain bacteria adhered to the PM than those of the ∆cbpA mutant strain. Therefore, CBPA may help to retain the bacteria, via the PM binding, close to the gut surface and thus takes part in the early steps of Bt gut interactions.


Asunto(s)
Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Mariposas Nocturnas/microbiología , Animales , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/patogenicidad , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Quitina/metabolismo , Quitinasas/metabolismo , Larva/microbiología , Mutación , Control Biológico de Vectores
9.
Front Microbiol ; 11: 610650, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424814

RESUMEN

Flagellar motility is considered an important virulence factor in different pathogenic bacteria. In Listeria monocytogenes the transcriptional repressor MogR regulates motility in a temperature-dependent manner, directly repressing flagellar- and chemotaxis genes. The only other bacteria known to carry a mogR homolog are members of the Bacillus cereus group, which includes motile species such as B. cereus and Bacillus thuringiensis as well as the non-motile species Bacillus anthracis, Bacillus mycoides and Bacillus pseudomycoides. Furthermore, the main motility locus in B. cereus group bacteria, carrying the genes for flagellar synthesis, appears to be more closely related to L. monocytogenes than to Bacillus subtilis, which belongs to a separate phylogenetic group of Bacilli and does not carry a mogR ortholog. Here, we show that in B. thuringiensis, MogR overexpression results in non-motile cells devoid of flagella. Global gene expression profiling showed that 110 genes were differentially regulated by MogR overexpression, including flagellar motility genes, but also genes associated with virulence, stress response and biofilm lifestyle. Accordingly, phenotypic assays showed that MogR also affects cytotoxicity and biofilm formation in B. thuringiensis. Overexpression of a MogR variant mutated in two amino acids within the putative DNA binding domain restored phenotypes to those of an empty vector control. In accordance, introduction of these mutations resulted in complete loss in MogR binding to its candidate flagellar locus target site in vitro. In contrast to L. monocytogenes, MogR appears to be regulated in a growth-phase dependent and temperature-independent manner in B. thuringiensis 407. Interestingly, mogR was found to be conserved also in non-motile B. cereus group species such as B. mycoides and B. pseudomycoides, which both carry major gene deletions in the flagellar motility locus and where in B. pseudomycoides mogR is the only gene retained. Furthermore, mogR is expressed in non-motile B. anthracis. Altogether this provides indications of an expanded set of functions for MogR in B. cereus group species, beyond motility regulation. In conclusion, MogR constitutes a novel B. thuringiensis pleiotropic transcriptional regulator, acting as a repressor of motility genes, and affecting the expression of a variety of additional genes involved in biofilm formation and virulence.

10.
Insects ; 10(5)2019 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-31060274

RESUMEN

Bacillus thuringiensis is an invertebrate pathogen that produces insecticidal crystal toxins acting on the intestinal barrier. In the Galleria mellonella larvae infection model, toxins from the PlcR virulence regulon contribute to pathogenicity by the oral route. While B. thuringiensis is principally an oral pathogen, bacteria may also reach the insect haemocoel following injury of the cuticle. Here, we address the question of spore virulence as compared to vegetative cells when the wild-type Bt407cry- strain and its isogenic ∆plcR mutant are inoculated directly into G. mellonella haemocoel. Mortality dose-response curves were constructed at 25 and 37 °C using spores or vegetative cell inocula, and the 50% lethal dose (LD50) in all infection conditions was determined after 48 h of infection. Our findings show that (i) the LD50 is lower for spores than for vegetative cells for both strains, while the temperature has no significant influence, and (ii) the ∆plcR mutant is four to six times less virulent than the wild-type strain in all infection conditions. Our results suggest that the environmental resistant spores are the most infecting form in haemocoel and that the PlcR virulence regulon plays an important role in toxicity when reaching the haemocoel from the cuticle and not only following ingestion.

11.
Cell Surf ; 5: 100032, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32803021

RESUMEN

Cyclic diguanylate (c-di-GMP) signalling affects several cellular processes in Bacillus cereus group bacteria including biofilm formation and motility, and CdgF was previously identified as a diguanylate cyclase promoting biofilm formation in B. thuringiensis. C-di-GMP can exert its function as a second messenger via riboswitch binding, and a functional c-di-GMP-responsive riboswitch has been found upstream of cbpA in various B. cereus group strains. Protein signature recognition predicted CbpA to be a cell wall-anchored surface protein with a fibrinogen or collagen binding domain. The aim of this study was to identify the binding ligand of CbpA and the function of CbpA in cellular processes that are part of the B. cereus group c-di-GMP regulatory network. By global gene expression profiling cbpA was found to be down-regulated in a cdgF deletion mutant, and cbpA exhibited maximum expression in early exponential growth. Contrary to the wild type, a ΔcbpA deletion mutant showed no binding to collagen in a cell adhesion assay, while a CbpA overexpression strain exhibited slightly increased collagen binding compared to the control. For both fibrinogen and fibronectin there was however no change in binding activity compared to controls, and CbpA did not appear to contribute to binding to abiotic surfaces (polystyrene, glass, steel). Also, the CbpA overexpression strain appeared to be less motile and showed a decrease in biofilm formation compared to the control. This study provides the first experimental proof that the binding ligand of the c-di-GMP regulated adhesin CbpA is collagen.

12.
Mol Microbiol ; 111(6): 1416-1429, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30548239

RESUMEN

The extracellular biofilm matrix often contains a network of amyloid fibers which, in the human opportunistic pathogen Bacillus cereus, includes the two homologous proteins TasA and CalY. We show here, in the closely related entomopathogenic species Bacillus thuringiensis, that CalY also displays a second function. In the early stationary phase of planktonic cultures, CalY was located at the bacterial cell-surface, as shown by immunodetection. Deletion of calY revealed that this protein plays a major role in adhesion to HeLa epithelial cells, to the insect Galleria mellonella hemocytes and in the bacterial virulence against larvae of this insect, suggesting that CalY is a cell-surface adhesin. In mid-stationary phase and in biofilms, the location of CalY shifted from the cell surface to the extracellular medium, where it was found as fibers. The transcription study and the deletion of sipW suggested that CalY change of location is due to a delayed activity of the SipW signal peptidase. Using purified CalY, we found that the protein polymerization occurred only in the presence of cell-surface components. CalY is, therefore, a bifunctional protein, which switches from a cell-surface adhesin activity in early stationary phase, to the production of fibers in mid-stationary phase and in biofilms.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Bacillus thuringiensis/genética , Biopelículas/crecimiento & desarrollo , Metaloproteasas/metabolismo , Factores de Virulencia/metabolismo , Adhesinas Bacterianas/genética , Animales , Bacillus thuringiensis/enzimología , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/genética , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Células HeLa , Hemocitos/microbiología , Humanos , Larva/microbiología , Metaloproteasas/genética , Mariposas Nocturnas/microbiología , Factores de Virulencia/genética
13.
Front Microbiol ; 8: 1437, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824570

RESUMEN

The dlt operon of Gram-positive bacteria is required for the incorporation of D-alanine esters into cell wall-associated teichoic acids (TAs). Addition of D-alanine to TAs reduces the negative charge of the cell envelope thereby preventing cationic antimicrobial peptides (CAMPs) from reaching their target of action on the bacterial surface. In most gram-positive bacteria, this operon consists of five genes dltXABCD but the involvement of the first ORF (dltX) encoding a small protein of unknown function, has never been investigated. The aim of this study was to establish whether this protein is involved in the D-alanylation process in Bacillus thuringiensis. We, therefore constructed an in frame deletion mutant of dltX, without affecting the expression of the other genes of the operon. The growth characteristics of the dltX mutant and those of the wild type strain were similar under standard in vitro conditions. However, disruption of dltX drastically impaired the resistance of B. thuringiensis to CAMPs and significantly attenuated its virulence in two insect species. Moreover, high-performance liquid chromatography studies showed that the dltX mutant was devoid of D-alanine, and electrophoretic mobility measurements indicated that the cells carried a higher negative surface charge. Scanning electron microscopy experiments showed morphological alterations of these mutant bacteria, suggesting that depletion of D-alanine from TAs affects cell wall structure. Our findings suggest that DltX is essential for the incorporation of D-alanyl esters into TAs. Therefore, DltX plays a direct role in the resistance to CAMPs, thus contributing to the survival of B. thuringiensis in insects. To our knowledge, this work is the first report examining the involvement of dltX in the D-alanylation of TAs.

16.
Res Microbiol ; 168(4): 331-344, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27810477

RESUMEN

Bacillus thuringiensis subsp. israelensis is one of the most important microorganisms used against mosquitoes. It was intensively studied following its discovery and became a model bacterium of the B. thuringiensis species. Those studies focused on toxin genes, aggregation-associated conjugation, linear genome phages, etc. Recent announcements of genomic sequences of different strains have not been explicitly related to the biological properties studied. We report data on plasmid content analysis of four strains using ultra-high-throughput sequencing. The strains were commercial product isolates, with their putative ancestor and type B. thuringiensis subsp. israelensis strain sequenced earlier. The assembled contigs corresponding to published and novel data were assigned to plasmids described earlier in B. thuringiensis subsp. israelensis and other B. thuringiensis strains. A new 360 kb plasmid was identified, encoding multiple transporters, also found in most of the earlier sequenced strains. Our genomic data show the presence of two toxin-coding plasmids of 128 and 100 kb instead of the reported 225 kb plasmid, a co-integrate of the former two. In two of the sequenced strains, only a 100 kb plasmid was present. Some heterogeneity exists in the small plasmid content and structure between strains. These data support the perception of active plasmid exchange among B. thuringiensis subsp. israelensis strains in nature.


Asunto(s)
Bacillus thuringiensis/genética , Elementos Transponibles de ADN/genética , Genoma Bacteriano/genética , Plásmidos/genética , Animales , Bacillus thuringiensis/patogenicidad , Toxinas Bacterianas/genética , Secuencia de Bases , Agentes de Control Biológico , Culicidae/microbiología , ADN Bacteriano/genética , Transferencia de Gen Horizontal/genética , Tipificación de Secuencias Multilocus , Análisis de Secuencia de ADN
18.
Biochim Biophys Acta ; 1850(9): 1930-41, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26093289

RESUMEN

BACKGROUND: Iron is an essential element for bacterial growth and virulence. Because of its limited bioavailability in the host, bacteria have adapted several strategies to acquire iron during infection. In the human opportunistic bacteria Bacillus cereus, a surface protein IlsA is shown to be involved in iron acquisition from both ferritin and hemoproteins. IlsA has a modular structure consisting of a NEAT (Near Iron transporter) domain at the N-terminus, several LRR (Leucine Rich Repeat) motifs and a SLH (Surface Layer Homology) domain likely involved in anchoring the protein to the cell surface. METHODS: Isothermal titration calorimetry, UV-Vis spectrophotometry, affinity chromatography and rapid kinetics stopped-flow measurements were employed to probe the binding and transfer of hemin between two different B. cereus surface proteins (IlsA and IsdC). RESULTS: IlsA binds hemin via the NEAT domain and is able to extract heme from hemoglobin whereas the LRR domain alone is not involved in these processes. A rapid hemin transfer from hemin-containing IlsA (holo-IlsA) to hemin-free IsdC (apo-IsdC) is demonstrated. CONCLUSIONS: For the first time, it is shown that two different B. cereus surface proteins (IlsA and IsdC) can interact and transfer heme suggesting their involvement in B. cereus heme acquisition. GENERAL SIGNIFICANCE: An important role for the complete Isd system in heme-associated bacterial growth is demonstrated and new insights into the interplay between an Isd NEAT surface protein and an IlsA-NEAT-LRR protein, both of which appear to be involved in heme-iron acquisition in B. cereus are revealed.


Asunto(s)
Bacillus cereus/química , Proteínas Bacterianas/química , Hemo/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Hemina/metabolismo , Hierro/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Análisis de Secuencia de Proteína , Termodinámica
19.
Curr Biol ; 24(20): 2417-22, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25308072

RESUMEN

Many microorganisms cooperate by secreting products that are commonly available to neighboring cells. These "public goods" include autoinduced, quorum-sensing (QS) molecules and the virulence factors activated by these signals. Public goods cooperation is exploitable by cheaters, cells that avoid the costs of production but gain an advantage by freeloading on the products of others. QS signals and responses can be cooperative under artificial laboratory conditions, but it remains unclear whether QS is cooperative in nature: little is known about the frequency of cheaters in natural populations, and cheaters may do poorly because of the importance of QS in major transcriptional networks. Here, we investigate the cooperative nature of QS in a natural system: the Gram-positive insect pathogen Bacillus thuringiensis and the larvae of the diamondback moth, Plutella xylostella. Although we find evidence of cooperation, QS null mutants are not effective cheats in vivo and cannot outcompete wild-type strains. We show that spatial structure limits mutant fitness and that well-separated microcolonies occur in vivo because of the strong population bottlenecks occurring during natural infection. We argue that spatial structure and low densities are the norm in early-stage infections, and this can explain why QS cheaters are rare in B. thuringiensis and its relatives. These results contrast with earlier experiments describing the high fitness of Gram-negative QS cheaters and suggest that QS suppression ("quorum quenching") can be clinically effective without having negative impacts on the evolution of virulence.


Asunto(s)
Bacillus thuringiensis/fisiología , Mariposas Nocturnas/microbiología , Percepción de Quorum , Animales , Interacciones Huésped-Patógeno , Larva/microbiología , Mutación
20.
PLoS One ; 9(8): e103326, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25083861

RESUMEN

The aim of this study was to explore the role of SecDF in protein secretion in Bacillus cereus ATCC 14579 by in-depth characterization of a markerless secDF knock out mutant. Deletion of secDF resulted in pleiotropic effects characterized by a moderately slower growth rate, aberrant cell morphology, enhanced susceptibility to xenobiotics, reduced virulence and motility. Most toxins, including food poisoning-associated enterotoxins Nhe, Hbl, and cytotoxin K, as well as phospholipase C were less abundant in the secretome of the ΔsecDF mutant as determined by label-free mass spectrometry. Global transcriptome studies revealed profound transcriptional changes upon deletion of secDF indicating cell envelope stress. Interestingly, the addition of glucose enhanced the described phenotypes. This study shows that SecDF is an important part of the Sec-translocase mediating efficient secretion of virulence factors in the Gram-positive opportunistic pathogen B. cereus, and further supports the notion that B. cereus enterotoxins are secreted by the Sec-system.


Asunto(s)
Bacillus cereus/fisiología , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/biosíntesis , Pared Celular/metabolismo , Animales , Bacillus cereus/efectos de los fármacos , Bacillus cereus/ultraestructura , Proteínas Bacterianas/genética , Transporte Biológico , Farmacorresistencia Bacteriana/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Técnicas de Inactivación de Genes , Mariposas Nocturnas/microbiología , Mutación , Estrés Fisiológico , Virulencia/genética , Xenobióticos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA