Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39150664

RESUMEN

This study aimed to compare the impact of iodosulfuron-methyl-sodium and an iodosulfuron-based herbicidal ionic liquid (HIL) on the microbiomes constituting the epiphytes and endophytes of cornflower (Centaurea cyanus L.). The experiment involved biotypes of cornflower susceptible and resistant to acetolactate synthase inhibition, examining potential bacterial involvement in sulfonylurea herbicide detoxification. We focused on microbial communities present on the surface and in the plant tissues of roots and shoots. The research included the synthesis and physicochemical analysis of a novel HIL, evaluation of shifts in bacterial community composition, analysis of the presence of catabolic genes associated with sulfonylurea herbicide degradation and determination of their abundance in all experimental variants. Overall, for the susceptible biotype, the biodiversity of the root microbiome was higher compared to shoot microbiome; however, both decreased notably after herbicide or HIL applications. The herbicide-resistant biotype showed lower degree of biodiversity changes, but shifts in community composition occurred, particularly in case of HIL treatment.

2.
Mol Pharm ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141824

RESUMEN

This study is focused on the utilization of naturally occurring salicylic acid and nicotinamide (vitamin B3) in the development of novel sustainable Active Pharmaceutical Ingredients (APIs) with significant potential for treating acne vulgaris. The study highlights how the chemical structure of the cation significantly influences surface activity, lipophilicity, and solubility in aqueous media. Furthermore, the new ionic forms of APIs, the synthesis of which was assessed with Green Chemistry metrics, exhibited very good antibacterial properties against common pathogens that contribute to the development of acne, resulting in remarkable enhancement of biological activity ranging from 200 to as much as 2000 times when compared to salicylic acid alone. The molecular docking studies also revealed the excellent anti-inflammatory activity of N-alkylnicotinamide salicylates comparable to commonly used drugs (indomethacin, ibuprofen, and acetylsalicylic acid) and were even characterized by better IC50 values than common anti-inflammatory drugs in some cases. The derivative, featuring a decyl substituent in the pyridinium ring of nicotinamide, exhibited efficacy against Cutibacterium acnes while displaying favorable water solubility and improved wettability on hydrophobic surfaces, marking it as particularly promising. To investigate the impact of the APIs on the biosphere, the EC50 parameter was determined against a model representative of crustaceans─Artemia franciscana. The majority of compounds (with the exception of the salt containing the dodecyl substituent) could be classified as "Relatively Harmless" or "Practically Nontoxic", indicating their potential low environmental impact, which is essential in the context of modern drug development.

3.
Environ Technol ; : 1-14, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849972

RESUMEN

In the framework of this study, six fungal isolates which demonstrated a high capability for biodegrading iodosulphuron-methyl sodium as well as herbicidal ionic liquids based on this herbicide were isolated from different soil samples. The isolates were identified based on the ITS region, whereas biodegradation residues were determined based on LC-MS/MS. Depending on the isolate, the half-lives values of the biodegraded herbicide or herbicidal ionic liquid ranged significantly from just 1.25 days to more than 40 days. The research findings unveiled that the structure of cations is a central limiting factor affecting fungal growth and herbicide transformation in case of ionic liquids. The length of the alkyl chain has been identified as the primary driver of herbicide toxicity, emphasizing the importance of structural factors in herbicide design. In cases when dodecyl(2-hydroxyethyl)dimethyl cation was used, its biodegradation ranged from 0 to approx. 20% and the biodegradability of the iodosulfuron-methyl was notably limited for the majority of the studied isolates. This knowledge provides guidance for development and selection of herbicides with reduced environmental impact. This study highlights the ecological importance of soil fungi, their potential role in herbicide biodegradation, the influence of cations on fungal growth and herbicide transformation, and the structural factors governing herbicide toxicity. Further research in these areas may lead to more efficient and environmentally friendly approaches to herbicide management.

4.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891947

RESUMEN

Esterquats constitute a unique group of quaternary ammonium salts (QASs) that contain an ester bond in the structure of the cation. Despite the numerous advantages of this class of compounds, only two mini-reviews discuss the subject of esterquats: the first one (2007) briefly summarizes their types, synthesis, and structural elements required for a beneficial environmental profile and only briefly covers their applications whereas the second one only reviews the stability of selected betaine-type esterquats in aqueous solutions. The rationale for writing this review is to critically reevaluate the relevant literature and provide others with a "state-of-the-art" snapshot of choline-type esterquats and betaine-type esterquats. Hence, the first part of this survey thoroughly summarizes the most important scientific reports demonstrating effective synthesis routes leading to the formation of both types of esterquats. In the second section, the susceptibility of esterquats to hydrolysis is explained, and the influence of various factors, such as the pH, the degree of salinity, or the temperature of the solution, was subjected to thorough analysis that includes quantitative components. The next two sections refer to various aspects associated with the ecotoxicity of esterquats. Consequently, their biodegradation and toxic effects on microorganisms are extensively analyzed as crucial factors that can affect their commercialization. Then, the reported applications of esterquats are briefly discussed, including the functionalization of macromolecules, such as cotton fabric as well as their successful utilization on a commercial scale. The last section demonstrates the most essential conclusions and reported drawbacks that allow us to elucidate future recommendations regarding the development of these promising chemicals.


Asunto(s)
Betaína , Cationes , Colina , Betaína/química , Betaína/análogos & derivados , Colina/química , Colina/análogos & derivados , Cationes/química , Ésteres/química , Compuestos de Amonio Cuaternario/química , Humanos
5.
Sci Total Environ ; 922: 171062, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38401717

RESUMEN

The following research provides novel and relevant insights into potential environmental consequences of combination of various organic cations with commercial systemic herbicide (dicamba), in accordance with a 'herbicidal ionic liquids' (HILs) strategy. Toxicity assays of five dicamba-based HILs comprising different hydrophobic and hydrophilic cations, namely choline [CHOL][DIC], ethyl betainate [BETC2][DIC], decyl betainate [BETC10][DIC], hexadecyl betainate [BETC16][DIC] and didecyldimethylammonium [DDA][DIC]), have been tested towards bacteria (Pseudomonas putida, Escherichia coli, Bacillus subtilis), algae (Chlorella vulgaris), fresh and marine water crustaceans (Daphnia magna, Artemia franciscana). The structure of respective substituents in the cation emerged as a decisive determinant of toxicity in the case of tested species. In consequence, small ions of natural origin ([CHOL] and [BETC2]) demonstrated toxicity numerous orders of magnitude lower compared to fully synthetic [DDA]. These results emphasize the role of cations' hydrophobicity, as well as origin, in the observed acute toxic effect. Time-dependent toxicity assays also indicated that betaine-type cations comprising an ester bond can rapidly transform into less harmful substances, which can generally result in a reduction in toxicity by even several orders of magnitude. Nonetheless, these findings challenge the concept of ionic liquids with herbicidal activity and give apparent parallels to adjuvant-dependent toxicity issues recently noted in typical herbicidal formulations.


Asunto(s)
Chlorella vulgaris , Herbicidas , Líquidos Iónicos , Pseudomonas putida , Herbicidas/toxicidad , Herbicidas/química , Dicamba/química , Líquidos Iónicos/toxicidad , Líquidos Iónicos/química , Cationes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...