Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Acoust Soc Am ; 155(6): 3807-3821, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38869371

RESUMEN

Increased ship traffic due to climate change increases underwater noise in the Arctic. Therefore, accurate measurements of underwater radiated noise are necessary to map marine sound and quantify shipping's impact on the Arctic ecosystem. This paper presents a method to calculate opportunistic source levels (SLs) using passive acoustic data collected at six locations in the Western Canadian Arctic from 2018 to 2022. Based on Automatic Identification System data, acoustic data, and a hybrid sound propagation model, the SLs of individual ships were calculated within a 5 km radius of each measurement site. A total of 66 measurements were obtained from 11 unique vessels, with multiple measurements from the same vessel type contributing more SLs. For vessels with propeller cavitation, measured SLs correlated positively with vessel parameters, such as speed and length. SL and speed did not correlate well for vessels without propeller cavitation. The JOMOPANS-ECHO SL model produced good agreement with measured SL for certain ship types (container ships, a tanker, and a passenger vessel). However, significant differences between measurement and model are evident for certain polar-class ships that travel in the Arctic, indicating that more controlled SL measurements are needed.

2.
Mar Pollut Bull ; 204: 116510, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805977

RESUMEN

The underwater soundscape, a habitat component for Arctic marine mammals, is shifting. We examined the drivers of the underwater soundscape at three sites in the Amundsen Gulf, Northwest Territories, Canada from 2018 to 2019 and estimated the contribution of abiotic and biotic sources between 20 Hz and 24 kHz. Higher wind speeds and the presence of bearded seal (Erignathus barbatus) vocalizations led to increased SPL (0.41 dB/km/h and 3.87 dB, respectively), while higher ice concentration and air temperature led to decreased SPL (-0.39 dB/% and - 0.096 dB/°C, respectively). Other marine mammals did not significantly impact the ambient soundscape. The presence of vessel traffic led to increased SPLs (12.37 dB) but was quieter at distances farther from the recorder (-2.57 dB/log m). The presence of high frequency and broadband signals produced by ice led to increased SPLs (7.60 dB and 10.16 dB, respectively).


Asunto(s)
Monitoreo del Ambiente , Regiones Árticas , Animales , Phocidae/fisiología , Canadá , Ecosistema , Territorios del Noroeste , Acústica , Sonido , Vocalización Animal
3.
Harmful Algae ; 127: 102474, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37544674

RESUMEN

This study presents the first evidence that a diverse suite of phycotoxins is not only being actively produced by the toxigenic algal communities in the Canadian Arctic waters, but is also entering the marine food web. We detected measurable amounts of Amnesic Shellfish Toxins (ASTs) and Paralytic Shellfish Toxins (PSTs), as well as trace amounts of other lipophilic toxin groups including pectenotoxins, yessotoxins, and cyclic imines, in bivalves collected from the Canadian Beaufort Sea in 2014 and 2018. There appear to be species-specific differences in accumulation and retention of AST by Arctic bivalves, with significantly higher concentrations recorded in Nuculanidae than Propeamussiidae, likely reflecting physiological and allometric differences. We further confirm the omnipresence of potentially toxic taxonomically-versatile phytoplankton communities in the western Canadian Arctic comprising Pseudo-nitzschia delicatissima group, P. obtusa, Dinophysis acuminata, Prorocentrum minimum, Alexandrium tamarense, and Gymnodinium spp. Although measurements of actual toxicity levels and profiles of these species at the time of sampling fall outside of the scope of this study, we show that high abundance and competitive success of known AST-producers, Pseudo-nitzschia spp., are possible in Canadian Arctic waters. In 2014, a strong dominance of Pseudo-nitzschia spp. was observed at a few shallow coastal stations, representing nearly 40% of the total phytoplankton cell abundances with > 106 cells/L at the depth of maximum chlorophyll a. We further describe oceanographic conditions conducive to high abundances of toxin-producing algae, indicating that temperature is likely a key factor. Even though measured AST and PST concentrations in bivalve tissue remained well below the Health Canada's levels at which monitored fisheries would close, i.e., 5% and 4%, respectively, their presence demonstrate that phycotoxin accumulation is occurring in food webs of the Canadian Beaufort Sea. Yet, the phycotoxin production controls and trophic transfer mechanisms remain unknown. Canadian Arctic marine ecosystems are rapidly changing and temperatures are expected to continue to increase. Given that these changes simultaneously affect multiple, and often co-occurring, species of primary producers, adaptive capacity is likely to play an important role in the structure of phytoplankton communities in the Canadian Arctic.


Asunto(s)
Bivalvos , Diatomeas , Animales , Toxinas Marinas/toxicidad , Ecosistema , Clorofila A , Canadá , Fitoplancton
4.
Mar Pollut Bull ; 193: 115233, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37421916

RESUMEN

Combining mercury and stable isotope data sets of consumers facilitates the quantification of whether contaminant variation in predators is due to diet, habitat use and/or environmental factors. We investigated inter-species variation in total Hg (THg) concentrations, trophic magnification slope between δ15N and THg, and relationships of THg with δ13C and δ34S in 15 fish and four marine mammal species (249 individuals in total) in coastal Arctic waters. Median THg concentration in muscle varied between species ranging from 0.08 ± 0.04 µg g-1 dw in capelin to 3.10 ± 0.80 µg g-1 dw in beluga whales. Both δ15N (r2 = 0.26) and δ34S (r2 = 0.19) best explained variation in log-THg across consumers. Higher THg concentrations occurred in higher trophic level species that consumed more pelagic-associated prey than consumers that rely on the benthic microbial-based food web. Our study illustrates the importance of using a multi-isotopic approach that includes δ34S when investigating trophic Hg dynamics in coastal marine systems.


Asunto(s)
Ballena Beluga , Caniformia , Mercurio , Contaminantes Químicos del Agua , Animales , Mercurio/análisis , Cadena Alimentaria , Bioacumulación , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Peces , Cetáceos
5.
BMC Res Notes ; 14(1): 347, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488867

RESUMEN

OBJECTIVES: Existing information on Arctic marine food web structure is fragmented. Integrating data across research programs is an important strategy for building a baseline understanding of food web structure and function in many Arctic regions. Naturally-occurring stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) measured directly in the tissues of organisms are a commonly-employed method for estimating food web structure. The objective of the current dataset was to synthesize disparate δ15N, and secondarily δ13C, data in the Canadian Beaufort continental shelf region relevant to trophic and ecological studies at the local and pan-Arctic scales. DATA DESCRIPTION: The dataset presented here contains nitrogen and carbon stable isotope ratios (δ15N, δ13C) measured in marine organisms from the Canadian Beaufort continental shelf region between 1983 and 2013, gathered from 27 published and unpublished sources with associated sampling metadata. A total of 1077 entries were collected, summarizing 8859 individual organisms/samples representing 333 taxa across the Arctic food web, from top marine mammal predators to primary producers.


Asunto(s)
Organismos Acuáticos , Nitrógeno , Animales , Regiones Árticas , Canadá , Ecosistema , Cadena Alimentaria , Isótopos de Nitrógeno/análisis
6.
Mar Pollut Bull ; 168: 112437, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33957495

RESUMEN

The Arctic has been a refuge from anthropogenic underwater noise; however, climate change has caused summer sea ice to diminish, allowing for unprecedented access and the potential for increased underwater noise. Baseline underwater sound levels must be quantified to monitor future changes and manage underwater noise in the Arctic. We analyzed 39 passive acoustic datasets collected throughout the Canadian Arctic from 2014 to 2019 using statistical models to examine spatial and temporal trends in daily mean sound pressure levels (SPL) and quantify environmental and anthropogenic drivers of SPL. SPL (50-1000 Hz) ranged from 70 to 127 dB re 1 µPa (median = 91 dB). SPL increased as wind speed increased, but decreased as both ice concentration and air temperature increased, and SPL increased as the number of ships per day increased. This study provides a baseline for underwater sound levels in the Canadian Arctic and fills many geographic gaps on published underwater sound levels.


Asunto(s)
Acústica , Sonido , Regiones Árticas , Canadá , Ruido , Espectrografía del Sonido
7.
Sci Rep ; 7: 42242, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28176868

RESUMEN

Climate change has resulted in an accelerated decline of Arctic sea ice since 2001 resulting in primary production increases and prolongation of the ice-free season within the Northwest Passage. The taxonomic and functional microbial community composition of the seawater and sea ice of the Canadian Arctic is not very well known. Bacterial communities from the bottom layer of sea ice cores and surface water from 23 locations around Cornwallis Island, NU, Canada, were extensively screened. The bacterial 16S rRNA gene was sequenced for all samples while shotgun metagenomics was performed on selected samples. Bacterial community composition showed large variation throughout the sampling area both for sea ice and seawater. Seawater and sea ice samples harbored significantly distinct microbial communities, both at different taxonomic levels and at the functional level. A key difference between the two sample types was the dominance of algae in sea ice samples, as visualized by the higher relative abundance of algae and photosynthesis-related genes in the metagenomic datasets and the higher chl a concentrations. The relative abundance of various OTUs and functional genes were significantly correlated with multiple environmental parameters, highlighting many potential environmental drivers and ecological strategies.


Asunto(s)
Cubierta de Hielo/microbiología , Metagenómica/métodos , Microbiota/genética , Agua de Mar/microbiología , Regiones Árticas , Canadá , Bases de Datos Genéticas , Geografía , Filogenia , ARN Ribosómico 16S/genética
8.
PLoS One ; 10(4): e0122418, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25901605

RESUMEN

With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice-associated production than generally assumed.


Asunto(s)
Clorofila/análisis , Cianobacterias/aislamiento & purificación , Eucariontes/aislamiento & purificación , Cubierta de Hielo , Regiones Árticas , Canadá , Clorofila A , Cianobacterias/química , Cianobacterias/clasificación , Eucariontes/química , Eucariontes/clasificación , Estaciones del Año , Agua de Mar , Nieve/química
9.
PLoS One ; 9(12): e114070, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25473949

RESUMEN

Pelagic primary production in Arctic seas has traditionally been viewed as biologically insignificant until after the ice breakup. There is growing evidence however, that under-ice blooms of pelagic phytoplankton may be a recurrent occurrence. During the springs of 2011 and 2012, we found substantial numbers (201-5713 cells m-3) of the large centric diatom (diameter >250 µm) Coscinodiscus centralis under the sea ice in the Canadian Arctic Archipelago near Resolute Bay, Nunavut. The highest numbers of these pelagic diatoms were observed in Barrow Strait. Spatial patterns of fatty acid profiles and stable isotopes indicated two source populations for C. centralis: a western origin with low light conditions and high nutrients, and a northern origin with lower nutrient levels and higher irradiances. Fatty acid analysis revealed that pelagic diatoms had significantly higher levels of polyunsaturated fatty acids (mean ± SD: 50.3 ± 8.9%) compared to ice-associated producers (30.6 ± 10.3%) in our study area. In particular, C. centralis had significantly greater proportions of the long chain omega-3 fatty acid, eicosapentaenoic acid (EPA), than ice algae (24.4 ± 5.1% versus 13.7 ± 5.1%, respectively). Thus, C. centralis represented a significantly higher quality food source for local herbivores than ice algae, although feeding experiments did not show clear evidence of copepod grazing on C. centralis. Our results suggest that C. centralis are able to initiate growth under pack ice in this area and provide further evidence that biological productivity in ice-covered seas may be substantially higher than previously recognized.


Asunto(s)
Diatomeas/citología , Diatomeas/metabolismo , Ácidos Grasos Omega-3/metabolismo , Cadena Alimentaria , Cubierta de Hielo , Animales , Regiones Árticas , Diatomeas/crecimiento & desarrollo , Fitoplancton , Zooplancton
10.
Proc Natl Acad Sci U S A ; 110(39): 15734-9, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24019487

RESUMEN

Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions.


Asunto(s)
Biopolímeros/análisis , Carbohidratos/análisis , Cubierta de Hielo/química , Regiones Antárticas , Regiones Árticas , Modelos Químicos , Peso Molecular , Solubilidad
11.
ISME J ; 7(8): 1461-71, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23514779

RESUMEN

Sea ice, a characteristic feature of polar waters, is home to diverse microbial communities. Sea-ice picoeukaryotes (unicellular eukaryotes with cell size <3 µm) have received little attention compared with diatoms that dominate the spring bloom in Arctic first-year sea ice. Here, we investigated the abundance of all picoeukaryotes, and of 11 groups (chlorophytes, cryptophytes, bolidophytes, haptophytes, Pavlovaphyceae, Phaeocystis spp., pedinellales, stramenopiles groups MAST-1, MAST-2 and MAST-6 and Syndiniales Group II) at 13 first-year sea-ice stations localized in Barrow Strait and in the vicinity of Cornwallis Island, Canadian Arctic Archipelago. We applied Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization to identify selected groups at a single cell level. Pavlovaphyceae and stramenopiles from groups MAST-2 and MAST-6 were for the first time reported from sea ice. Total numbers of picoeukaryotes were significantly higher in the vicinity of Cornwallis Island than in Barrow Strait. Similar trend was observed for all the groups except for haptophytes. Chlorophytes and cryptophytes were the dominant plastidic, and MAST-2 most numerous aplastidic of all the groups investigated. Numbers of total picoeukaryotes, chlorophytes and MAST-2 stramenopiles were positively correlated with the thickness of snow cover. All studied algal and MAST groups fed on bacteria. Presence of picoeukaryotes from various trophic groups (mixotrophs, phagotrophic and parasitic heterotrophs) indicates the diverse ecological roles picoeukaryotes have in sea ice. Yet, >50% of total sea-ice picoeukaryote cells remained unidentified, highlighting the need for further study of functional and phylogenetic sea-ice diversity, to elucidate the risks posed by ongoing Arctic changes.


Asunto(s)
Biodiversidad , Ambiente , Eucariontes/fisiología , Cubierta de Hielo/parasitología , Regiones Árticas , Bacterias/clasificación , Bacterias/genética , Canadá , Clorofila/análisis , Clorofila A , Cubierta de Hielo/química , Cubierta de Hielo/microbiología , Hibridación Fluorescente in Situ , Estaciones del Año , Vacuolas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...