Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(45): e2310057120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37906643

RESUMEN

During aging, the cellular response to unfolded proteins is believed to decline, resulting in diminished proteostasis. In model organisms, such as Caenorhabditis elegans, proteostatic decline with age has been linked to proteome solubility shifts and the onset of protein aggregation. However, this correlation has not been extensively characterized in aging mammals. To uncover age-dependent changes in the insoluble portion of a mammalian proteome, we analyzed the detergent-insoluble fraction of mouse brain tissue by mass spectrometry. We identified a group of 171 proteins, including the small heat shock protein α-crystallin, that become enriched in the detergent-insoluble fraction obtained from old mice. To enhance our ability to detect features associated with proteins in that fraction, we complemented our data with a meta-analysis of studies reporting the detergent-insoluble proteins in various mouse models of aging and neurodegeneration. Strikingly, insoluble proteins from young and old mice are distinct in several features in our study and across the collected literature data. In younger mice, proteins are more likely to be disordered, part of membraneless organelles, and involved in RNA binding. These traits become less prominent with age, as an increased number of structured proteins enter the pellet fraction. This analysis suggests that age-related changes to proteome organization lead a group of proteins with specific features to become detergent-insoluble. Importantly, these features are not consistent with those associated with proteins driving membraneless organelle formation. We see no evidence in our system of a general increase of condensate proteins in the detergent-insoluble fraction with age.


Asunto(s)
Detergentes , Proteoma , Ratones , Animales , Proteoma/metabolismo , Detergentes/metabolismo , Envejecimiento , Caenorhabditis elegans/metabolismo , Encéfalo/metabolismo , Mamíferos/metabolismo
2.
Exp Hematol Oncol ; 11(1): 56, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109804

RESUMEN

BACKGROUND: The bone marrow is the place of hematopoiesis with a microenvironment that supports lifelong maintenance of stem cells and high proliferation. It is not surprising that this environment is also favourable for malignant cells emerging in the bone marrow or metastasizing to it. While the cellular composition of the bone marrow microenvironment has been extensively studied, the extracellular matrix and interstitial fluid components have received little attention. Since the sinusoids connect the bone marrow interstitial fluid to the circulation, it is often considered to have the same composition as peripheral blood plasma. Stark differences in the cellular composition of the bone marrow and peripheral blood with different secretory capacities would however suggest profound differences. METHODS: In this study we set out to better define if and how the bone marrow interstitial fluid (BMIF) compares to the peripheral blood plasma (PBP) and how both are remodeled during chemotherapy. We applied a multi-omic strategy to quantify the metabolite, lipid and protein components as well as the proteolytic modification of proteins to gain a comprehensive understanding of the two compartments. RESULTS: We found that the bone marrow interstitial fluid is clearly distinct from peripheral blood plasma, both during active pediatric acute lymphoblastic leukemia and following induction chemotherapy. Either compartment was shaped differently by active leukemia, with the bone marrow interstitial fluid being rich in extracellular vesicle components and showing protease dysregulation while the peripheral blood plasma showed elevation of immune regulatory proteins. Following chemotherapy, the BMIF showed signs of cellular remodeling and impaired innate immune activation while the peripheral blood plasma was characterized by restored lipid homeostasis. CONCLUSION: This study provides a comprehensive examination of the fluid portion of the acute lymphoblastic leukemia microenvironment and finds the contribution of either microenvironment to tumourigenesis.

3.
Methods Mol Biol ; 2456: 29-51, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35612733

RESUMEN

Enrichment of detergent insoluble proteins is a commonly used technique for analyzing proteins that may be aggregating in disease or with age. However, various methods for enriching for these proteins are used. Here we present a method using a mild detergent (Triton X-100) and high centrifugation speed (20,000 × g) allowing for sufficient protein extraction and enrichment for large protein assemblies. Digestion is performed on columns allowing for a methanol chloroform wash to remove the highly prevalent lipids in brain tissue. This is followed by analysis by data independent acquisition mass spectrometry, which we have found to be highly reproducible. Our method is intended to enrich for amorphous aggregates, which may accumulate upon the collapse of protein homeostasis.


Asunto(s)
Encéfalo , Detergentes , Animales , Encéfalo/metabolismo , Detergentes/química , Espectrometría de Masas , Ratones , Octoxinol , Proteínas/metabolismo
4.
J Exp Clin Cancer Res ; 40(1): 96, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33722259

RESUMEN

BACKGROUND: Murine xenografts of pediatric leukemia accurately recapitulate genomic aberrations. How this translates to the functional capacity of cells remains unclear. Here, we studied global protein abundance, phosphorylation, and protein maturation by proteolytic processing in 11 pediatric B- and T- cell ALL patients and 19 corresponding xenografts. METHODS: Xenograft models were generated for each pediatric patient leukemia. Mass spectrometry-based methods were used to investigate global protein abundance, protein phosphorylation, and limited proteolysis in paired patient and xenografted pediatric acute B- and T- cell lymphocytic leukemia, as well as in pediatric leukemia cell lines. Targeted next-generation sequencing was utilized to examine genetic abnormalities in patients and in corresponding xenografts. Bioinformatic and statistical analysis were performed to identify functional mechanisms associated with proteins and protein post-translational modifications. RESULTS: Overall, we found xenograft proteomes to be most equivalent with their patient of origin. Protein level differences that stratified disease subtypes at diagnostic and relapse stages were largely recapitulated in xenografts. As expected, PDXs lacked multiple human leukocyte antigens and complement proteins. We found increased expression of cell cycle proteins indicating a high proliferative capacity of xenografted cells. Structural genomic changes and mutations were reflected at the protein level in patients. In contrast, the post-translational modification landscape was shaped by leukemia type and host and only to a limited degree by the patient of origin. Of 201 known pediatric oncogenic drivers and drug-targetable proteins, the KMT2 protein family showed consistently high variability between patient and corresponding xenografts. Comprehensive N terminomics revealed deregulated proteolytic processing in leukemic cells, in particular from caspase-driven cleavages found in patient cells. CONCLUSION: Genomic and host factors shape protein and post-translational modification landscapes differently. This study highlights select areas of diverging biology while confirming murine patient-derived xenografts as a generally accurate model system.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteoma/metabolismo , Transactivadores/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Proteome Res ; 20(5): 3002-3008, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33780260

RESUMEN

The high affinity of biotin to streptavidin has made it one of the most widely used affinity tags in proteomics. Early methods used biotin for enrichment alone and mostly ignored the biotin-labeled peptide. Recent advances in labeling have led to an increase in biotinylation efficiency and shifted the interest to the detection of the site of biotinylation. This has increased the confidence in identification and provided additional structural information, yet it requires the efficient release of the biotinylated protein/peptide and the sensitive separation and detection of biotinylated peptides by LC-MS/MS. Despite its long use in affinity proteomics, the effect of biotinylation on the chromatographic, ionization, and fragmentation behavior and the ultimate detection of peptides is not well understood. To address this, we compare two commercially available biotin labels, EZ-Link Sulfo-NHS-Biotin and Sulfo-NHS-SS-Biotin, the latter containing a labile linker to efficiently release biotin to determine the effects of peptide modification on peptide detection. We describe an increase in the hydrophobicity and charge reduction with an increasing number of biotin labels attached. On the basis of our data, we recommend gradient optimization to account for more hydrophobic biotinylated peptides and include singly charged precursors to account for charge reduction by biotin.


Asunto(s)
Biotina , Espectrometría de Masas en Tándem , Biotinilación , Cromatografía Liquida , Estreptavidina
6.
Anal Chem ; 92(10): 7011-7019, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32319750

RESUMEN

The nonlinear signal response of electrospray ionization (ESI) presents a critical limitation for mass spectrometry (MS)-based quantitative analysis. In the field of metabolomics research, this issue has largely remained unaddressed; MS signal intensities are usually directly used to calculate fold changes for quantitative comparison. In this work, we demonstrate that, due to the nonlinear ESI response, signal intensity ratios of a metabolic feature calculated between two samples may not reflect their real metabolic concentration ratios (i.e., fold-change compression), implying that conventional fold-change calculations directly using MS signal intensities can be misleading. In this regard, we developed a quality control (QC) sample-based signal calibration workflow to overcome the quantitative bias caused by the nonlinear ESI response. In this workflow, calibration curves for every metabolic feature are first established using a QC sample injected in serial injection volumes. The MS signals of each metabolic feature are then calibrated to their equivalent QC injection volumes for comparative analysis. We demonstrated this novel workflow in a targeted metabolite analysis, showing that the accuracy of fold-change calculations can be significantly improved. Furthermore, in a metabolomic comparison of the bone marrow interstitial fluid samples from leukemia patients before and after chemotherapy, an additional 59 significant metabolic features were found with fold changes larger than 1.5, and an additional 97 significant metabolic features had fold changes corrected by more than 0.1. This work enables high-quality quantitative analysis in untargeted metabolomics, thus providing more confident biological hypotheses generation.


Asunto(s)
Leucemia/diagnóstico , Leucemia/metabolismo , Metabolómica , Calibración , Humanos , Leucemia/sangre , Control de Calidad , Espectrometría de Masa por Ionización de Electrospray
7.
Mol Cell Proteomics ; 18(11): 2335-2347, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31471496

RESUMEN

Protein N termini unambiguously identify truncated, alternatively translated or modified proteoforms with distinct functions and reveal perturbations in disease. Selective enrichment of N-terminal peptides is necessary to achieve proteome-wide coverage for unbiased identification of site-specific regulatory proteolytic processing and protease substrates. However, many proteolytic processes are strictly confined in time and space and therefore can only be analyzed in minute samples that provide insufficient starting material for current enrichment protocols. Here we present High-efficiency Undecanal-based N Termini EnRichment (HUNTER), a robust, sensitive and scalable method for the analysis of previously inaccessible microscale samples. HUNTER achieved identification of >1000 N termini from as little as 2 µg raw HeLa cell lysate. Broad applicability is demonstrated by the first N-terminome analysis of sorted human primary immune cells and enriched mitochondrial fractions from pediatric cancer patients, as well as protease substrate identification from individual Arabidopsis thaliana wild type and Vacuolar Processing Enzyme-deficient mutant seedlings. We further implemented the workflow on a liquid handling system and demonstrate the feasibility of clinical degradomics by automated processing of liquid biopsies from pediatric cancer patients.


Asunto(s)
Encéfalo/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Fragmentos de Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteoma/análisis , Plantones/metabolismo , Animales , Arabidopsis/metabolismo , Niño , Humanos , Dominios Proteicos , Proteolisis , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA