RESUMEN
INTRODUCTION: In patients admitted to the intensive care unit (ICU), muscle mass is inversely associated with mortality. Although muscle mass can be estimated with 24-h urinary creatinine excretion (UCE), its use for risk prediction in individual patients is limited because age-, sex-, weight- and length-specific reference values for UCE are lacking. The ratio between measured creatinine clearance (mCC) and estimated glomerular filtration rate (eGFR) might circumvent this constraint. The main goal was to assess the association of the mCC/eGFR ratio in ICU patients with all-cause hospital and long-term mortality. METHODS: The mCC/eGFR ratio was determined in patients admitted to our ICU between 2005 and 2021 with KDIGO acute kidney injury (AKI) stage 0-2 and an ICU stay ≥ 24 h. mCC was calculated from UCE and plasma creatinine and indexed to 1.73 m2. mCC/eGFR was analyzed by categorizing patients in mCC/eGFR quartiles and as continuous variable. RESULTS: Seven thousand five hundred nine patients (mean age 61 ± 15 years; 38% female) were included. In-hospital mortality was 27% in the lowest mCC/eGFR quartile compared to 11% in the highest quartile (P < 0.001). Five-year post-hospital discharge actuarial mortality was 37% in the lowest mCC/eGFR quartile compared to 19% in the highest quartile (P < 0.001). mCC/eGFR ratio as continuous variable was independently associated with in-hospital mortality in multivariable logistic regression (odds ratio: 0.578 (95% CI: 0.465-0.719); P < 0.001). mCC/eGFR ratio as continuous variable was also significantly associated with 5-year post-hospital discharge mortality in Cox regression (hazard ratio: 0.27 (95% CI: 0.22-0.32); P < 0.001). CONCLUSIONS: The mCC/eGFR ratio is associated with both in-hospital and long-term mortality and may be an easily available index of muscle mass in ICU patients.
Asunto(s)
Creatinina , Tasa de Filtración Glomerular , Mortalidad Hospitalaria , Unidades de Cuidados Intensivos , Humanos , Masculino , Femenino , Persona de Mediana Edad , Creatinina/sangre , Creatinina/orina , Anciano , Lesión Renal Aguda/mortalidad , Lesión Renal Aguda/sangre , Lesión Renal Aguda/diagnóstico , Estudios Retrospectivos , Músculo Esquelético/metabolismoRESUMEN
BACKGROUND: Normothermic machine perfusion (NMP) is used for preservation and assessment of human donor livers prior to transplantation. During NMP, the liver is metabolically active, which allows detailed studies on the physiology of human livers. OBJECTIVES: To study the production of hemostatic proteins in human donor livers during NMP for up to 7 days. METHODS: In this observational study, 9 livers underwent NMP for up to 7 days with a heparinized perfusate based on red blood cells and colloids using a modified Liver Assist device (XVIVO). Perfusate samples were collected before NMP and daily thereafter for measurement of antigen and activity levels of a comprehensive panel of hemostatic proteins after heparin neutralization. RESULTS: Within 1 day, perfusate samples displayed the potential for coagulation activation as evidenced by international normalized ratio and activated partial thromboplastin assays. This was accompanied by detection of substantial quantities of functionally active coagulation proteins and inhibitors, although the specific activity of many proteins was decreased, compared with that in normal plasma. Perfusate levels of hemostatic proteins increased in the first days, reaching a stable level after 3 to 4 days of perfusion. CONCLUSION: During long-term NMP of human livers, functionally active hemostatic proteins are released into the perfusate in substantial quantities, but some proteins appear to have decreased functional properties compared with proteins in normal human plasma. We propose that NMP may be used as a platform to test efficacy of drugs that stimulate or inhibit the production of coagulation factors or to test liver-mediated clearance of prohemostatic protein therapeutics.
Asunto(s)
Trasplante de Hígado , Hígado , Preservación de Órganos , Perfusión , Humanos , Hígado/metabolismo , Factores de Tiempo , Preservación de Órganos/métodos , Masculino , Persona de Mediana Edad , Femenino , Donantes de Tejidos , Adulto , Coagulación Sanguínea/efectos de los fármacos , Hemostasis , Anciano , Proteínas Sanguíneas/metabolismo , Hemostáticos , HeparinaRESUMEN
Metformin is the most widely used drug in type 2 diabetes. Regular metformin use has been associated with changes in concentrations of amino acids. In the present study, we used valid stable-isotope labeled GC-MS methods to measure amino acids and metabolites, including creatinine as well as malondialdehyde (MDA), as an oxidative stress biomarker in plasma, urine, and dialysate samples in a patient at admission to the intensive care unit and during renal replacement treatment because of metformin-associated lactic acidosis (MALA, 21 mM lactate, 175 µM metformin). GC-MS revealed lower concentrations of amino acids in plasma, normal concentrations of the nitric oxide (NO) metabolites nitrite and nitrate, and normal concentrations of MDA. Renal tubular reabsorption rates were altered on admission. The patient received renal replacement therapy over 50 to 70 h of normalized plasma amino acid concentrations and their tubular reabsorption, as well as the tubular reabsorption of nitrite and nitrate. This study indicates that GC-MS is a versatile analytical tool to measure different classes of physiological inorganic and organic substances in complex biological samples in clinical settings such as MALA.
RESUMEN
Metformin (N,N-dimethylbiguanide), an inhibitor of gluconeogenesis and insulin sensitizer, is widely used for the treatment of type 2 diabetes. In some patients with renal insufficiency, metformin can accumulate and cause lactic acidosis, known as metformin-associated lactic acidosis (MALA, defined as lactate ≥ 5 mM, pH < 7.35, and metformin concentration > 38.7 µM). Here, we report on the post-translational modification (PTM) of proline (Pro) to 4-hydroxyproline (OH-Pro) in metformin-associated lactic acidosis and in metformin-treated patients with Becker muscular dystrophy (BMD). Pro and OH-Pro were measured simultaneously by gas chromatography-mass spectrometry before, during, and after renal replacement therapy in a patient admitted to the intensive care unit (ICU) because of MALA. At admission to the ICU, plasma metformin concentration was 175 µM, with a corresponding lactate concentration of 20 mM and a blood pH of 7.1. Throughout ICU admission, the Pro concentration was lower compared to healthy controls. Renal excretion of OH-Pro was initially high and decreased over time. Moreover, during the first 12 h of ICU admission, OH-Pro seems to be renally secreted while thereafter, it was reabsorbed. Our results suggest that MALA is associated with hyper-hydroxyprolinuria due to elevated PTM of Pro to OH-Pro by prolyl-hydroxylase and/or inhibition of OH-Pro metabolism in the kidneys. In BMD patients, metformin, at the therapeutic dose of 3 × 500 mg per day for 6 weeks, increased the urinary excretion of OH-Pro suggesting elevation of Pro hydroxylation to OH-Pro. Our study suggests that metformin induces specifically the expression/activity of prolyl-hydroxylase in metformin intoxication and BMD.
Asunto(s)
Acidosis Láctica , Diabetes Mellitus Tipo 2 , Metformina , Distrofia Muscular de Duchenne , Humanos , Metformina/efectos adversos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Acidosis Láctica/inducido químicamente , Acidosis Láctica/terapia , Hidroxiprolina , Cromatografía de Gases y Espectrometría de Masas , Prolina , Hidroxilación , Distrofia Muscular de Duchenne/tratamiento farmacológico , Ácido Láctico , Oxigenasas de Función Mixta/uso terapéutico , Hipoglucemiantes/efectos adversosRESUMEN
Background: Normothermic machine perfusion (NMP) is used to preserve and test donor livers before transplantation. During NMP, the liver is metabolically active and produces waste products, which are released into the perfusate. In this study, we describe our simplified and inexpensive setup that integrates continuous renal replacement therapy (CRRT) with NMP for up to 7 d. We also investigated if the ultrafiltrate could be used for monitoring perfusate concentrations of small molecules such as glucose and lactate. Methods: Perfusate composition (urea, osmolarity, sodium, potassium, chloride, calcium, magnesium, phosphate, glucose, and lactate) was analyzed from 56 human NMP procedures without CRRT. Next, in 6 discarded human donor livers, CRRT was performed during NMP by integrating a small dialysis filter (0.2 m2) into the circuit to achieve continuous ultrafiltration combined with continuous fluid substitution for up to 7 d. Results: Within a few hours of NMP without CRRT, a linear increase in osmolarity and concentrations of urea and phosphate to supraphysiological levels was observed. After integration of CRRT into the NMP circuit, the composition of the perfusate was corrected to physiological values within 12 h, and this homeostasis was maintained during NMP for up to 7 d. Glucose and lactate levels, as measured in the CRRT ultrafiltrate, were strongly correlated with perfusate levels (râ =â 0.997, Pâ <â 0.001 and râ =â 0.999, Pâ <â 0.001, respectively). Conclusions: The integration of CRRT into the NMP system corrected the composition of the perfusate to near-physiological values, which could be maintained for up to 7 d. The ultrafiltrate can serve as an alternative to the perfusate to monitor concentrations of small molecules without potentially compromising sterility.
RESUMEN
Infection-related consultations on intensive care units (ICU) have a positive impact on quality of care and clinical outcome. However, timing of these consultations is essential and to date they are typically event-triggered and reactive. Here, we investigate a proactive approach to identify patients in need for infection-related consultations by machine learning models using routine electronic health records. Data was retrieved from a mixed ICU at a large academic tertiary care hospital including 9684 admissions. Infection-related consultations were predicted using logistic regression, random forest, gradient boosting machines, and long short-term memory neural networks (LSTM). Overall, 7.8% of admitted patients received an infection-related consultation. Time-sensitive modelling approaches performed better than static approaches. Using LSTM resulted in the prediction of infection-related consultations in the next clinical shift (up to eight hours in advance) with an area under the receiver operating curve (AUROC) of 0.921 and an area under the precision recall curve (AUPRC) of 0.541. The successful prediction of infection-related consultations for ICU patients was done without the use of classical triggers, such as (interim) microbiology reports. Predicting this key event can potentially streamline ICU and consultant workflows and improve care as well as outcome for critically ill patients with (suspected) infections.
Asunto(s)
Cuidados Críticos , Unidades de Cuidados Intensivos , Humanos , Hospitalización , Derivación y Consulta , Aprendizaje AutomáticoRESUMEN
Purpose: We report the findings of four critically ill patients who underwent an [18F]FDG-PET/CT because of persistent inflammation during the late phase of their COVID-19. Methods: Four mechanically ventilated patients with COVID-19 were retrospectively discussed in a research group to evaluate the added value of [18F]FDG-PET/CT. Results: Although pulmonary PET/CT findings differed, bilateral lung anomalies could explain the increased CRP and leukocytes in all patients. This underscores the limited ability of the routine laboratory to discriminate inflammation from secondary infections. Based on PET/CT findings, a secondary infection/inflammatory focus was suspected in two patients (pancreatitis and gastritis). Lymphadenopathy was present in patients with a detectable SARS-CoV-2 viral load. Muscle uptake around the hips or shoulders was observed in all patients, possibly due to the process of heterotopic ossification. Conclusion: This case series illustrates the diagnostic potential of [18F]FDG-PET/CT imaging in critically ill patients with persistent COVID-19 for the identification of other causes of inflammation and demonstrates that this technique can be performed safely in mechanically ventilated critically ill patients.
RESUMEN
18F-FDG-PET/CT imaging has become a key tool to evaluate infectious and inflammatory diseases. However, application of 18F-FDG-PET/CT in patients in the intensive care unit (ICU) is limited, which is remarkable since the development of critical illness is closely linked to infection and inflammation. This limited use is caused by perceived complexity and risk of planning and executing 18F-FDG-PET/CT in such patients. The aim of this systematic review was to investigate the feasibility of 18F-FDG-PET/CT in ICU patients with special emphasis on patient preparation, transport logistics and safety. Therefore, a systematic search was performed in PubMed, Embase, and Web of Science using the search terms: intensive care, critically ill, positron emission tomography and 18F-FDG or derivates. A total of 1183 articles were found of which 10 were included. Three studies evaluated the pathophysiology of acute respiratory distress syndrome, acute lung injury and acute chest syndrome. Three other studies applied 18F-FDG-PET/CT to increase understanding of pathophysiology after traumatic brain injury. The remaining four studies evaluated infection of unknown origin. These four studies showed a sensitivity and specificity between 85%-100% and 57%-88%, respectively. A remarkable low adverse event rate of 2% was found during the entire 18F-FDG-PET/CT procedure, including desaturation and hypotension. In all studies, a team consisting of an intensive care physician and nurse was present during transport to ensure continuation of necessary critical care. Full monitoring during transport was used in patients requiring mechanical ventilation or vasopressor support. None of the studies used specific patient preparation for ICU patients. However, one article described specific recommendations in their discussion. In conclusion, 18F-FDG-PET/CT has been shown to be feasible and safe in ICU patients, even when ventilated or requiring vasopressors. Specific recommendations regarding patient preparation, logistics and scanning are needed. Including 18F-FDG-PET/CT in routine workup of infection of unknown origin in ICU patients showed potential to identify source of infection and might improve outcome.
Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos , Tomografía de Emisión de Positrones/métodos , Cuidados Críticos , Unidades de Cuidados Intensivos , Sensibilidad y EspecificidadRESUMEN
Background: In the previously reported SAPS trial (https://clinicaltrials.gov/ct2/show/NCT01139489), procalcitonin-guidance safely reduced the duration of antibiotic treatment in critically ill patients. We assessed the impact of shorter antibiotic treatment on antimicrobial resistance development in SAPS patients. Materials and methods: Cultures were assessed for the presence of multi-drug resistant (MDR) or highly resistant organisms (HRMO) and compared between PCT-guided and control patients. Baseline isolates from 30 days before to 5 days after randomization were compared with those from 5 to 30 days post-randomization. The primary endpoint was the incidence of new MDR/HRMO positive patients. Results: In total, 8,113 cultures with 96,515 antibiotic test results were evaluated for 439 and 482 patients randomized to the PCT and control groups, respectively. Disease severity at admission was similar for both groups. Median (IQR) durations of the first course of antibiotics were 6 days (4-10) and 7 days (5-11), respectively (p = 0.0001). Antibiotic-free days were 7 days (IQR 0-14) and 6 days (0-13; p = 0.05). Of all isolates assessed, 13% were MDR/HRMO positive and at baseline 186 (20%) patients were MDR/HMRO-positive. The incidence of new MDR/HRMO was 39 (8.9%) and 45 (9.3%) in PCT and control patients, respectively (p = 0.82). The time courses for MDR/HRMO development were also similar for both groups (p = 0.33). Conclusions: In the 921 randomized patients studied, the small but statistically significant reduction in antibiotic treatment in the PCT-group did not translate into a detectable change in antimicrobial resistance. Studies with larger differences in antibiotic treatment duration, larger study populations or populations with higher MDR/HRMO incidences might detect such differences.
RESUMEN
Importance: A variety of perioperative risk factors are associated with postoperative mortality risk. However, the relative contribution of routinely collected intraoperative clinical parameters to short-term and long-term mortality remains understudied. Objective: To examine the performance of multiple machine learning models with data from different perioperative periods to predict 30-day, 1-year, and 5-year mortality and investigate factors that contribute to these predictions. Design, Setting, and Participants: In this prognostic study using prospectively collected data, risk prediction models were developed for short-term and long-term mortality after cardiac surgery. Included participants were adult patients undergoing a first-time valve operation, coronary artery bypass grafting, or a combination of both between 1997 and 2017 in a single center, the University Medical Centre Groningen in the Netherlands. Mortality data were obtained in November 2017. Data analysis took place between February 2020 and August 2021. Exposure: Cardiac surgery. Main Outcomes and Measures: Postoperative mortality rates at 30 days, 1 year, and 5 years were the primary outcomes. The area under the receiver operating characteristic curve (AUROC) was used to assess discrimination. The contribution of all preoperative, intraoperative hemodynamic and temperature, and postoperative factors to mortality was investigated using Shapley additive explanations (SHAP) values. Results: Data from 9415 patients who underwent cardiac surgery (median [IQR] age, 68 [60-74] years; 2554 [27.1%] women) were included. Overall mortality rates at 30 days, 1 year, and 5 years were 268 patients (2.8%), 420 patients (4.5%), and 612 patients (6.5%), respectively. Models including preoperative, intraoperative, and postoperative data achieved AUROC values of 0.82 (95% CI, 0.78-0.86), 0.81 (95% CI, 0.77-0.85), and 0.80 (95% CI, 0.75-0.84) for 30-day, 1-year, and 5-year mortality, respectively. Models including only postoperative data performed similarly (30 days: 0.78 [95% CI, 0.73-0.82]; 1 year: 0.79 [95% CI, 0.74-0.83]; 5 years: 0.77 [95% CI, 0.73-0.82]). However, models based on all perioperative data provided less clinically usable predictions, with lower detection rates; for example, postoperative models identified a high-risk group with a 2.8-fold increase in risk for 5-year mortality (4.1 [95% CI, 3.3-5.1]) vs an increase of 11.3 (95% CI, 6.8-18.7) for the high-risk group identified by the full perioperative model. Postoperative markers associated with metabolic dysfunction and decreased kidney function were the main factors contributing to mortality risk. Conclusions and Relevance: This study found that the addition of continuous intraoperative hemodynamic and temperature data to postoperative data was not associated with improved machine learning-based identification of patients at increased risk of short-term and long-term mortality after cardiac operations.
Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Adulto , Humanos , Femenino , Anciano , Masculino , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Factores de Riesgo , Puente de Arteria Coronaria/efectos adversos , Curva ROC , Aprendizaje AutomáticoRESUMEN
Metabolic flexibility in mammals enables stressed tissues to generate additional ATP by converting large amounts of glucose into lactic acid; however, this process can cause transient local or systemic acidosis. Certain mammals are adapted to extreme environments and are capable of enhanced metabolic flexibility as a specialized adaptation to challenging habitat niches. For example, naked mole-rats (NMRs) are a fossorial and hypoxia-tolerant mammal whose metabolic responses to environmental stressors markedly differ from most other mammals. When exposed to hypoxia, NMRs exhibit robust hypometabolism but develop minimal acidosis. Furthermore, and despite a very long lifespan relative to other rodents, NMRs have a remarkably low cancer incidence. Most advanced cancers in mammals display increased production of lactic acid from glucose, irrespective of oxygen availability. This hallmark of cancer is known as the Warburg effect (WE). Most malignancies acquire this metabolic phenotype during their somatic evolution, as the WE benefits tumor growth in several ways. We propose that the peculiar metabolism of the NMR makes development of the WE inherently difficult, which might contribute to the extraordinarily low cancer rate in NMRs. Such an adaptation of NMRs to their subterranean environment may have been facilitated by modified biochemical responses with a stronger inhibition of the production of CO2 and lactic acid by a decreased extracellular pH. Since this pH-inhibition could be deeply hard-wired in their metabolic make-up, it may be difficult for malignant cells in NMRs to acquire the WE-phenotype that facilitates cancer growth in other mammals. In the present commentary, we discuss this idea and propose experimental tests of our hypothesis.
RESUMEN
Ex situ normothermic machine perfusion (NMP) is increasingly used for viability assessment of high-risk donor livers, whereas dual hypothermic oxygenated machine perfusion (DHOPE) reduces ischemia-reperfusion injury. We aimed to resuscitate and test the viability of initially-discarded, high-risk donor livers using sequential DHOPE and NMP with two different oxygen carriers: an artificial hemoglobin-based oxygen carrier (HBOC) or red blood cells (RBC). In a prospective observational cohort study of 54 livers that underwent DHOPE-NMP, the first 18 procedures were performed with a HBOC-based perfusion solution and the subsequent 36 procedures were performed with an RBC-based perfusion solution for the NMP phase. All but one livers were derived from extended criteria donation after circulatory death donors, with a median donor risk index of 2.84 (IQR 2.52-3.11). After functional assessment during NMP, 34 livers (63% utilization), met the viability criteria and were transplanted. One-year graft and patient survival were 94% and 100%, respectively. Post-transplant cholangiopathy occurred in 1 patient (3%). There were no significant differences in utilization rate and post-transplant outcomes between the HBOC and RBC group. Ex situ machine perfusion using sequential DHOPE-NMP for resuscitation and viability assessment of high-risk donor livers results in excellent transplant outcomes, irrespective of the oxygen carrier used.
Asunto(s)
Trasplante de Hígado , Hemoglobinas , Humanos , Hígado , Trasplante de Hígado/métodos , Donadores Vivos , Preservación de Órganos/métodos , Oxígeno , Perfusión/métodos , Estudios ProspectivosRESUMEN
Although short-term machine perfusion (≤24 h) allows for resuscitation and viability assessment of high-risk donor livers, the donor organ shortage might be further remedied by long-term perfusion machines. Extended preservation of injured donor livers may allow reconditioning, repairing, and regeneration. This review summarizes the necessary requirements and challenges for long-term liver machine preservation, which requires integrating multiple core physiological functions to mimic the physiological environment inside the body. A pump simulates the heart in the perfusion system, including automatically controlled adjustment of flow and pressure settings. Oxygenation and ventilation are required to account for the absence of the lungs combined with continuous blood gas analysis. To avoid pressure necrosis and achieve heterogenic tissue perfusion during preservation, diaphragm movement should be simulated. An artificial kidney is required to remove waste products and control the perfusion solution's composition. The perfusate requires an oxygen carrier, but will also be challenged by coagulation and activation of the immune system. The role of the pancreas can be mimicked through closed-loop control of glucose concentrations by automatic injection of insulin or glucagon. Nutrients and bile salts, generally transported from the intestine to the liver, have to be supplemented when preserving livers long term. Especially for long-term perfusion, the container should allow maintenance of sterility. In summary, the main challenge to develop a long-term perfusion machine is to maintain the liver's homeostasis in a sterile, carefully controlled environment. Long-term machine preservation of human livers may allow organ regeneration and repair, thereby ultimately solving the shortage of donor livers.
Asunto(s)
Trasplante de Hígado , Hígado , Preservación de Órganos , Factores de Tiempo , Homeostasis/fisiología , Humanos , Hígado/metabolismo , Trasplante de Hígado/métodos , Preservación de Órganos/métodos , Soluciones Preservantes de Órganos , PerfusiónRESUMEN
BACKGROUND: Occlusions of intravenous (IV) tubing can prevent vital and time-critical medication or solutions from being delivered into the bloodstream of patients receiving IV therapy. At low flow rates (≤ 1 ml/h) the alarm delay (time to an alert to the user) can be up to 2 h using conventional pressure threshold algorithms. In order to reduce alarm delays we developed and evaluated the performance of two new real-time occlusion detection algorithms and one co-occlusion detector that determines the correlation in trends in pressure changes for multiple pumps. METHODS: Bench-tested experimental runs were recorded in triplicate at rates of 1, 2, 4, 8, 16, and 32 ml/h. Each run consisted of 10 min of non-occluded infusion followed by a period of occluded infusion of 10 min or until a conventional occlusion alarm at 400 mmHg occurred. The first algorithm based on binary logistic regression attempts to detect occlusions based on the pump's administration rate Q(t) and pressure sensor readings P(t). The second algorithm continuously monitored whether the actual variation in the pressure exceeded a threshold of 2 standard deviations (SD) above the baseline pressure. When a pump detected an occlusion using the SD algorithm, a third algorithm correlated the pressures of multiple pumps to detect the presence of a shared occlusion. The algorithms were evaluated using 6 bench-tested baseline single-pump occlusion scenarios, 9 single-pump validation scenarios and 7 multi-pump co-occlusion scenarios (i.e. with flow rates of 1 + 1, 1 + 2, 1 + 4, 1 + 8, 1 + 16, and 1 + 32 ml/h respectively). Alarm delay was the primary performance measure. RESULTS: In the baseline single-pump occlusion scenarios, the overall mean ± SD alarm delay of the regression and SD algorithms were 1.8 ± 0.8 min and 0.4 ± 0.2 min, respectively. Compared to the delay of the conventional alarm this corresponds to a mean time reduction of 76% (P = 0.003) and 95% (P = 0.001), respectively. In the validation scenarios the overall mean ± SD alarm delay of the regression and SD algorithms were respectively 1.8 ± 1.6 min and 0.3 ± 0.2 min, corresponding to a mean time reduction of 77% and 95%. In the multi-pump scenarios a correlation > 0.8 between multiple pump pressures after initial occlusion detection by the SD algorithm had a mean ± SD alarm delay of 0.4 ± 0.2 min. In 2 out of the 9 validation scenarios an occlusion was not detected by the regression algorithm before a conventional occlusion alarm occurred. Otherwise no occlusions were missed. CONCLUSIONS: In single pumps, both the regression and SD algorithm considerably reduced alarm delay compared to conventional pressure limit-based detection. The SD algorithm appeared to be more robust than the regression algorithm. For multiple pumps the correlation algorithm reliably detected co-occlusions. The latter may be used to localize the segment of tubing in which the occlusion occurs. Trial registration Not applicable.
Asunto(s)
Bombas de Infusión , Preparaciones Farmacéuticas , Algoritmos , Falla de Equipo , Humanos , PresiónRESUMEN
OBJECTIVES: In critically ill patients, dysnatremia is common, and in these patients, in-hospital mortality is higher. It remains unknown whether changes of serum sodium after ICU admission affect mortality, especially whether normalization of mild hyponatremia improves survival. DESIGN: Retrospective cohort study. SETTING: Ten Dutch ICUs between January 2011 and April 2017. PATIENTS: Adult patients were included if at least one serum sodium measurement within 24 hours of ICU admission and at least one serum sodium measurement 24-48 hours after ICU admission were available. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A logistic regression model adjusted for age, sex, and Acute Physiology and Chronic Health Evaluation-IV-predicted mortality was used to assess the difference between mean of sodium measurements 24-48 hours after ICU admission and first serum sodium measurement at ICU admission (Δ48 hr-[Na]) and in-hospital mortality. In total, 36,660 patients were included for analysis. An increase in serum sodium was independently associated with a higher risk of in-hospital mortality in patients admitted with normonatremia (Δ48 hr-[Na] 5-10 mmol/L odds ratio: 1.61 [1.44-1.79], Δ48 hr-[Na] > 10 mmol/L odds ratio: 4.10 [3.20-5.24]) and hypernatremia (Δ48 hr-[Na] 5-10 mmol/L odds ratio: 1.47 [1.02-2.14], Δ48 hr-[Na] > 10 mmol/L odds ratio: 8.46 [3.31-21.64]). In patients admitted with mild hyponatremia and Δ48 hr-[Na] greater than 5 mmol/L, no significant difference in hospital mortality was found (odds ratio, 1.11 [0.99-1.25]). CONCLUSIONS: An increase in serum sodium in the first 48 hours of ICU admission was associated with higher in-hospital mortality in patients admitted with normonatremia and in patients admitted with hypernatremia.
Asunto(s)
Enfermedad Crítica/mortalidad , Mortalidad Hospitalaria/tendencias , Hipernatremia/complicaciones , Sodio/análisis , Adulto , Anciano , Estudios de Cohortes , Correlación de Datos , Femenino , Humanos , Hipernatremia/sangre , Hipernatremia/mortalidad , Unidades de Cuidados Intensivos/organización & administración , Unidades de Cuidados Intensivos/estadística & datos numéricos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Países Bajos/epidemiología , Estudios Retrospectivos , Sodio/sangreRESUMEN
OBJECTIVE: Lactate has been shown to be preferentially metabolized in comparison to glucose after physiological stress, such as strenuous exercise. Derangements of lactate and glucose are common after out-of-hospital cardiac arrest (OHCA). Therefore, we hypothesized that lactate decreases faster than glucose after return-to-spontaneous-circulation (ROSC) after OHCA. RESULTS: We included 155 OHCA patients in our analysis. Within the first 8 h of presentation to the emergency department, 843 lactates and 1019 glucoses were available, respectively. Lactate decreased to 50% of its initial value within 1.5 h (95% CI [0.2-3.6 h]), while glucose halved within 5.6 h (95% CI [5.4-5.7 h]). Also, in the first 8 h after presentation lactate decreases more than glucose in relation to their initial values (lactate 72.6% vs glucose 52.1%). In patients with marked hyperlactatemia after OHCA, lactate decreased expediently while glucose recovered more slowly, whereas arterial pH recovered at a similar rapid rate as lactate. Hospital non-survivors (N = 82) had a slower recovery of lactate (P = 0.002) than survivors (N = 82). The preferential clearance of lactate underscores its role as a prime energy substrate, when available, during recovery from extreme stress.
Asunto(s)
Reanimación Cardiopulmonar , Servicios Médicos de Urgencia , Paro Cardíaco Extrahospitalario , Glucosa , Humanos , Cinética , Ácido Láctico , Estudios RetrospectivosRESUMEN
BACKGROUND: 2-Deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET)/computed tomography (CT) is an advanced imaging technique that can be used to examine the whole body for an infection focus in a single examination in patients with bloodstream infection (BSI) of unknown origin. However, literature on the use of this technique in intensive care patients is scarce. The purpose of this study was to evaluate the diagnostic yield of FDG-PET/CT in intensive care patients with BSI. METHODS: In this retrospective cohort study, all intensive care patients from our Dutch university medical center who had culture-proven BSI between 2010 and 2020 and underwent FDG-PET/CT to find the focus of infection were included. Diagnostic performance was calculated and logistic regression analysis was performed to evaluate the association between FDG-PET/CT outcome and C-reactive protein level (CRP), leukocyte count, duration of antibiotic treatment, duration of ICU stay, quality of FDG-PET/CT, and dependency on mechanical ventilation. In addition, the impact of FDG-PET/CT on clinical treatment was evaluated. RESULTS: 30 intensive care patients with BSI were included. In 21 patients, an infection focus was found on FDG-PET/CT which led to changes in clinical management in 14 patients. FDG-PET/CT achieved a sensitivity of 90.9% and specificity of 87.5% for identifying the focus of infection. Poor quality of the FDG-PET images significantly decreased the likelihood of finding an infection focus as compared to reasonable or good image quality (OR 0.16, P = 0.034). No other variables were significantly associated with FDG-PET/CT outcome. No adverse events during the FDG-PET/CT procedure were reported. CONCLUSION: FDG-PET/CT has a high diagnostic yield for detecting the infection focus in patients with BSI admitted to intensive care. Poor PET image quality was significantly associated with a decreased likelihood of finding the infection focus in patients with BSI. This could be improved by adequate dietary preparation and cessation of intravenous glucose and glucose-regulating drugs. Recent advances in PET/CT technology enable higher image quality with shorter imaging time and may contribute to routinely performing FDG-PET/CT in intensive care patients with BSI of unknown origin.