Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life Sci ; 336: 122284, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008208

RESUMEN

Taurine (TAU) is a sulfur-containing amino acid abundantly found in the human body. Endogenously, TAU is synthesized from cysteine in the liver. However, newborns rely entirely on TAU's dietary supply (milk). There is no investigation on the effect of long-term TAU administration on next-generation neurological development. The current study evaluated the effect of long-term TAU supplementation during the maternal gestational and litter weaning time on several neurological parameters in mice offspring. Moreover, the effects of TAU on mitochondrial function and oxidative stress biomarkers as plausible mechanisms of its action in the whole brain and hippocampus have been evaluated. TAU (0.5 % and 1 % w/v) was dissolved in the drinking water of pregnant mice (Day one of pregnancy), and amino acid supplementation was continued during the weaning time (post-natal day; PND = 21) until litters maturity (PND = 65). It was found that TAU significantly improved cognitive function, memory performance, reflexive motor activity, and emotional behaviors in F1-mice generation. TAU measurement in the brain and hippocampus revealed higher levels of this amino acid. TAU and ATP levels were also significantly higher in the mitochondria isolated from the whole brain and hippocampus. Based on these data, TAU could be suggested as a supplement during pregnancy or in pediatric formula. The effects of TAU on cellular mitochondrial function and energy metabolism might play a fundamental role in the positive effects of this amino acid observed in this investigation.


Asunto(s)
Suplementos Dietéticos , Taurina , Recién Nacido , Embarazo , Femenino , Niño , Ratones , Animales , Humanos , Taurina/farmacología , Pubertad , Encéfalo , Aminoácidos/farmacología
2.
Heliyon ; 9(11): e22165, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38053886

RESUMEN

Background and objectives: Aluminum phosphide (AlP), known as "rice tablet," is widely used as an effective pesticide. However, AlP poisoning is a common cause of mortality in many countries, such as Iran. Unfortunately, there is no specific antidote for AlP toxicity to date. AlP releases phosphine gas when it is exposed to moisture or acid. Phosphine is a potent mitochondrial toxin that could significantly inhibit cellular energy metabolism. AlP poisoning is an emergency condition that needs instant and effective intervention. Dihydroxyacetone (DHA) is a simple saccharide used for several pharmacological as well as cosmetic purposes. Previously, we found that DHA could significantly prevent mitochondrial impairment induced by toxic agents such as cyanide and phosphine in various in vitro and in vivo experimental models. Methods: Hospitalized patients (n = 111) were evaluated for eligibility criteria. Among these patients, n = 35 cases were excluded due to incomplete data (n = 11) and suspicion of poisoning with poisons other than AlP (n = 24). Meanwhile, n = 76 cases with confirmed AlP poisoning were included in the study. AlP-poisoned patients who did not receive DHA (n = 18) were used as the control group.Patients (n = 58) received at least one dose of DHA (500 ml of 5 % DHA solution w/v, i.v.) as an adjuvant therapy in addition to the routine treatment of AlP poisoning. Arterial blood gas (ABG), blood pH, bicarbonate levels, and other vital signs and biochemical measurements were monitored. Moreover, the mortality rate and hospitalization time were evaluated in DHA-treated and AlP-poisoned patients without DHA administration. Several biomarkers were assessed before (upon hospitalization) and after DHA treatment. The routine tests for AlP-poisoned patients in this study were the measurement of electrolytes (K+ and Na+), WBC, RBC, hemoglobin, INR, carbonate (HCO3), blood pH, PaCO2, and PaO2 and SGPT, SGOT, BUN, Cr. Results: Upon patients' admission, significant decreases in blood pH (acidosis), blood PaO2, and HCO3 levels were the hallmarks of AlP poisoning. It was found that DHA significantly alleviated biomarkers of AlP poisoning and tremendously enhanced patients' survival rate (65.52 % in DHA-treated vs 33.34 % in the control group) compared to patients treated based on hospital routine AlP poisoning protocols (no DHA). No significant adverse effects were evident in DHA-treated patients in the current study. Interpretation and conclusions: These data suggest that parenteral DHA is a novel and effective antidote against AlP poisoning to be used as an adjuvant in addition to routine supportive treatment. Trial registration: IR.SUMS.REC.1394.102.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...