RESUMEN
Propolis is a natural mixture of resins, wax, and pollen from plant buds and flowers, enriched with enzymes and bee saliva. It also contains various essential oils, vitamins, mineral salts, trace elements, hormones, and ferments. It has been found that propolis possesses antimicrobial, antiviral, and anti-inflammatory properties. We have studied the antiviral activity of six extracts of Bulgarian propolis collected from six districts of Bulgaria. The study was conducted against structurally different viruses: human coronavirus strain OC-43 (HCoV OC-43) and human respiratory syncytial virus type 2 (HRSV-2) (enveloped RNA viruses), human herpes simplex virus type 1 (HSV-1) (enveloped DNA virus), human rhinovirus type 14 (HRV-14) (non-enveloped RNA virus) and human adenovirus type 5 (HadV-5) (non-enveloped DNA virus). The influence of the extracts on the internal replicative cycle of viruses was determined using the cytopathic effect (CPE) inhibition test. The virucidal activity, its impact on the stage of viral adsorption to the host cell, and its protective effect on healthy cells were evaluated using the final dilution method, making them the focal points of interest. The change in viral infectivity under the action of propolis extracts was compared with untreated controls, and Δlgs were determined. Most propolis samples administered during the viral replicative cycle demonstrated the strongest activity against HCoV OC-43 replication. The influence of propolis extracts on the viability of extracellular virions was expressed to a different degree in the various viruses studied, and the effect was significantly stronger in those with an envelope. Almost all extracts significantly inhibited the adsorption step of the herpes virus and, to a less extent, of the coronavirus to the host cell, and some of them applied before viral infection demonstrated a protective effect on healthy cells. Our results enlarge the knowledge about the action of propolis and could open new perspectives for its application in viral infection treatment.
RESUMEN
A series of novel 1-oxo-2,3,4-trisubstituted tetrahydroisoquinoline (THIQ) derivatives bearing other heterocyclic moieties in their structure were synthesized based on the reaction between homophthalic anhydride and imines. Initial studies were carried out to establish the anti-coronavirus activity of some of the newly obtained THIQ-derivatives against two strains of human coronavirus-229E and OC-43. Their antiviral activity was compared with that of their close analogues, piperidinones and thiomorpholinones, previously synthesized in our group, with aim to expand the range of the tested representative sample and to obtain valuable preliminary information about biological properties of a wider variety of compounds.
Asunto(s)
Coronavirus Humano 229E , Infecciones por Coronavirus , Coronavirus , Tetrahidroisoquinolinas , Humanos , Tetrahidroisoquinolinas/farmacología , Antivirales/farmacologíaRESUMEN
The use of DNA barcoding has revolutionised biodiversity science, but its application depends on the existence of comprehensive and reliable reference libraries. For many poorly known taxa, such reference sequences are missing even at higher-level taxonomic scales. We harvested the collections of the Smithsonian's National Museum of Natural History (USNM) to generate DNA barcoding sequences for genera of terrestrial arthropods previously not recorded in one or more major public sequence databases. Our workflow used a mix of Sanger and Next-Generation Sequencing (NGS) approaches to maximise sequence recovery while ensuring affordable cost. In total, COI sequences were obtained for 5,686 specimens belonging to 3,737 determined species in 3,886 genera and 205 families distributed in 137 countries. Success rates varied widely according to collection data and focal taxon. NGS helped recover sequences of specimens that failed a previous run of Sanger sequencing. Success rates and the optimal balance between Sanger and NGS are the most important drivers to maximise output and minimise cost in future projects. The corresponding sequence and taxonomic data can be accessed through the Barcode of Life Data System, GenBank, the Global Biodiversity Information Facility, the Global Genome Biodiversity Network Data Portal and the NMNH data portal.
RESUMEN
BACKGROUND: Bulgaria is a country with a wide range of medicinal plants, with uses in traditional medicine dating back for centuries. METHODS: Disc diffusion assay was used to evaluate the antimicrobial activity of the plant extracts. A cytopathic effect inhibition test was used for the assessment of the antiviral activity of the extracts. The virucidal activity of the extracts, their influence on the stage of viral adsorption, and their protective effect on uninfected cells were reported using the end-point dilution method, and Δlgs was determined as compared to the untreated controls. RESULTS: The results of the study reveal that the antibacterial potential of G. glabra and H. perforatum extracts in Gram-positive bacteria is more effective than in Gram-negative bacteria. When applied during the replication of HSV-1 and HCov-OC-43, only some of the extracts showed weak activity, with SI between 2 to 8.5. Almost all tested extracts inhibited the extracellular virions of the studied enveloped viruses (HSV-1 and HCov-OC-43) to a greater extent than of the non-enveloped viruses (PV-1 and HAdV-5). They inhibited the stage of viral adsorption (HSV-1) in the host cell (MDBK) to varying degrees and showed a protective effect on healthy cells (MDBK) before they were subjected to viral invasion (HSV-1). CONCLUSION: The antipathogenic potential of extracts of H. perforatum and G. glabra suggests their effectiveness as antimicrobial agents. All 13 extracts of the Bulgarian medicinal plants studied can be used to reduce viral yield in a wide range of viral infections.
RESUMEN
Nowadays, there is a lack of information on the mosquito's fauna and DNA barcoding sequence reference library from many areas in Mexico, including the Volcanoes of Central America physiographic subprovince in the state of Chiapas. Consequently, a survey was undertaken to delineate the mosquito (Diptera: Culicidae) fauna in this region across different seasons using different collecting techniques. All species were identified by morphology and DNA barcoding, and their ecological features were also defined. In total, 62 taxa were morphologically examined, 60 of these were successfully identified based on morphological characteristics, but two were unable to be identified at the species level. The genera Aedes, Anopheles, Culex, and Wyeomyia are the most diverse among mosquito genera collected and include several species of medical and veterinary importance. Ecological characteristics of the immature habitats indicated that they were grouped into four categories namely, (1) large water bodies at ground level, (2) small and shady phytotelmata (e.g., tree holes and bamboo internodes), (3) large phytotelmata (e.g., plant leaves and axis bromeliad), and (4) artificial containers. The cytochrome c oxidase subunit I (COI) DNA barcoding sequences successfully separated the majority of these species, although specific species showed >2% intraspecific genetic divergences.
Asunto(s)
Aedes , Anopheles , Culex , Culicidae , Animales , Ecosistema , MéxicoRESUMEN
Accurate identification of mosquito species is essential to support programs that involve the study of distribution and mosquito control. Numerous mosquito species are difficult to identify based only on morphological characteristics, due to the morphological similarities in different life stages and large numbers of some species that are members of morphologically similar species complexes. In the present study, the mosquitoes collected in the Pantanos de Centla Biosphere Reserve, southeastern Mexico, were evaluated using a combination of morphological and molecular approaches (mitochondrial cytochrome c oxidase subunit I [COI] DNA barcode). A total of 1,576 specimens of 10 genera and 35 species, mostly adult stages, were collected. A total of 225 COI DNA barcode sequences were analyzed; most species formed well-supported groups in the neighbor joining, maximum likelihood, and Bayesian inference trees. The intraspecific Kimura 2-parameter (K2P) genetic distance averaged 1.52%. An intraspecific K2P distance of 6.20% was observed in Anopheles crucians s.l., while a deep split was identified in Culex erraticus and Cx. conspirator. This study showed that COI DNA barcodes offer a reliable approach to support mosquito species identification in Mexico.
Asunto(s)
Culex , Código de Barras del ADN Taxonómico , Animales , Teorema de Bayes , Culex/genética , Complejo IV de Transporte de Electrones/genética , México , FilogeniaRESUMEN
This study evaluated the in vitro antineoplastic and antiviral potential and in vivo toxicity of twelve extracts with different polarity obtained from the herbaceous perennial plant Geum urbanum L. (Rosaceae). In vitro cytotoxicity was determined by ISO 10993-5/2009 on bladder cancer, (T-24 and BC-3C), liver carcinoma (HEP-G2) and normal embryonic kidney (HEK-293) cell lines. The antineoplastic activity was elucidated through assays of cell clonogenicity, apoptosis induction, nuclear factor kappa B p65 (NFκB p65) activation and total glutathione levels. Neutral red uptake study was applied for antiviral activity. The most promising G. urbanum extract was analyzed by UHPLC-HRMS. The acute in vivo toxicity analysis was carried out following OEDC 423. The ethyl acetate extract of aerial parts (EtOAc-AP) exhibited the strongest antineoplastic activity on bladder cancer cell lines (IC50 = 21.33-25.28 µg/mL) by inducing apoptosis and inhibiting NFκB p65 and cell clonogenicity. EtOAc and n-butanol extracts showed moderate antiviral activity against human adenovirus type 5 and human simplex virus type I. Seventy four secondary metabolites (gallic and ellagic acid derivatives, phenolic acids, flavonoids, etc.) were identified in EtOAc-AP by UHPLC-HRMS. This extract induced no signs of acute toxicity in liver and kidney specimens of H-albino mice in doses up to 210 mg/kg. In conclusion, our study contributes substantially to the detailed pharmacological characterization of G. urbanum, thus helping the development of health-promoting phytopreparations.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antivirales/farmacología , Geum/química , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/química , Antivirales/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Especificidad de Órganos/efectos de los fármacos , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Espectrometría de Masas en TándemRESUMEN
Mosquitoes are commonly identified to species level using morphological traits, but complementary methods for identification are often necessary when specimens are collected as immature stages, stored inadequately, or when delineation of species complexes is problematic. DNA-barcoding using the mitochondrial cytochrome c oxidase subunit 1 (COI) gene is one such tool used for the morphological identification of species. A comprehensive entomological survey of mosquito species in Mexico State identified by COI DNA barcoding and morphology is documented in this paper. Specimens were collected from all the physiographic provinces in Mexico State between 2017 and 2019. Overall, 2,218 specimens were collected from 157 localities representing both subfamilies Anophelinae and Culicinae. A species checklist that consists of 6 tribes, 10 genera, 20 subgenera, and 51 species, 35 of which are new records for Mexico State, is provided. Three hundred and forty-two COI sequences of 46 species were analysed. Mean intraspecific and interspecific distances ranged between 0% to 3.9% and from 1.2% to 25.3%, respectively. All species groups were supported by high bootstraps values in a Neighbour-Joining analysis, and new COI sequences were generated for eight species: Aedes chionotum Zavortink, Ae. vargasi Schick, Ae. gabriel Schick, Ae. guerrero Berlin, Ae. ramirezi Vargas and Downs, Haemagogus mesodentatus Komp and Kumm, Culex restrictor Dyar and Knab, and Uranotaenia geometrica Theobald. This study provides a detailed inventory of the Culicidae from Mexico State and discusses the utility of DNA barcoding as a complementary tool for accurate mosquito species identification in Mexico.
Asunto(s)
Culicidae/clasificación , Código de Barras del ADN Taxonómico , Aedes/anatomía & histología , Aedes/clasificación , Aedes/genética , Animales , Anopheles/anatomía & histología , Anopheles/clasificación , Anopheles/genética , Culex/anatomía & histología , Culex/clasificación , Culex/genética , Culicidae/anatomía & histología , Culicidae/genética , Complejo IV de Transporte de Electrones/genética , Femenino , Genes Mitocondriales , Masculino , México , Mitocondrias/enzimología , Mitocondrias/genéticaRESUMEN
The pandemic of Zika virus in 2016 and other arboviruses prompted La Rioja Government in Spain to implement an entomological surveillance program of mosquitoes (Diptera; Culicidae) in the region of La Rioja. The morphological identification was supported by genetic analysis using the COI (cytochrome c oxidase subunit I) and the ITS2 (internal transcribed spacer 2) genes. In total, we identified 24 species arranged in 6 genera: Aedes (7 species), Anopheles (4 species), Coquillettidia (1 species), Culex (7 species), Culiseta (4 species), and Uranotaenia (1 species). Aedes sticticus and Aedes geniculatus are newly reported for La Rioja region. In total, 465 COI sequences were analyzed for Culicinae and Anophelinae and 54 ITS2 sequences for Anophelinae; all individuals identified as the same species clustered together in the Neighbor Joining trees. The levels of sequence divergence based on COI ranged between 0% and 2.62%, while the interspecific genetic divergence ranged from 3.05% to 20.07%. Within the genus Culiseta, certain specimens of Culiseta annulata, Culiseta litorea, and Culiseta subochrea were morphologically misidentified due to variation in the main diagnostic characters. The interspecific genetic divergence based on the ITS2 ranged from 0% to 2.98%. An accurate identification of mosquito vectors is the first step to establish a vector surveillance program for preventing pathogen transmission.
Asunto(s)
Culicidae/clasificación , Mosquitos Vectores/clasificación , Distribución Animal , Animales , Culicidae/anatomía & histología , Culicidae/genética , ADN/genética , ADN Intergénico/genética , Mosquitos Vectores/anatomía & histología , Mosquitos Vectores/genética , Filogenia , España , Especificidad de la EspecieRESUMEN
INTRODUCTION: Due to the high prevalence of viral infections having no specific treatment and the constant emergence of resistant viral strains, searching for effective antiviral compounds is crucial. The present study explores in vitro the antiviral activity of ethanolic extract from aerial parts of. AIM: The aim of the current study was to evaluate antiviral activity of ethanolic extract from herbaceous plant. MATERIALS AND METHODS: The crude aqueous ethanolic extract from aerial parts of. RESULTS: The results show that the extract has the lowest toxicity on the MDBK cell line and similar cytotoxicity in Hep-2, whereas in the MDCK cells it has more than twice the highest toxicity. Testing the antiviral activity of. CONCLUSION: The crude extract from aerial parts of the medicinal plant.
Asunto(s)
Enterovirus Humano B/efectos de los fármacos , Herpesvirus Humano 1/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Extractos Vegetales/farmacología , Tanacetum , Animales , Antioxidantes , Supervivencia Celular/efectos de los fármacos , Perros , Células Epiteliales/efectos de los fármacos , Etanol , Humanos , Técnicas In Vitro , Virus de la Influenza A/efectos de los fármacos , Células de Riñón Canino Madin Darby , Componentes Aéreos de las Plantas , Solventes , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Virión/efectos de los fármacos , Replicación Viral/efectos de los fármacosRESUMEN
The Channel Islands are British Crown dependencies located in the English Channel to the west of the Normandy coast in northern France. Whilst there have been studies investigating tick occurrence and distribution in different habitats on the mainland of the UK and in France, the Channel Islands have been relatively understudied. As such, little is known about whether the sheep tick, Ixodes ricinus, is present, and whether there is a potential risk of Lyme borreliosis on the Channel Islands. To ascertain the presence of I. ricinus on the three largest islands in the archipelago: Jersey, Guernsey and Alderney, surveys of ticks questing in the vegetation and ticks feeding on hosts were undertaken during April and May 2016. Across all three islands, the highest numbers of ticks were found in woodland habitats. Ixodes ricinus was the predominant questing tick species found on Jersey, and Ixodes ventalloi the most common questing tick species on Alderney and Guernsey, with little or no evidence of questing I. ricinus on either island. During field studies on small mammals, I. ricinus was the predominant tick species feeding on Jersey bank voles (Myodes glareolus caesarius), with Ixodes hexagonus the most common species infesting hedgehogs on Guernsey. We propose that the greater diversity of small mammals on Jersey may be important in supporting immature stages of I. ricinus, in contrast to Guernsey and Alderney. Morphological identification of tick species was confirmed by PCR sequencing based on amplification of the cytochrome c oxidase subunit one (cox1) gene (COI DNA barcoding). To date, there have been few records of human tick bites in the Channel Islands, suggesting that the current risk from tick-borne disease may be low, but continued reporting of any human tick bites, along with reporting of cases of Lyme borreliosis will be important for continued assessment of the impact of tick-borne diseases in the Channel Islands.
Asunto(s)
Distribución Animal , Ixodes/fisiología , Salud Pública , Animales , Islas Anglonormandas , Ecosistema , Femenino , Humanos , Ixodes/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Masculino , Ninfa/crecimiento & desarrollo , Ninfa/fisiologíaRESUMEN
There are ~240 species of Culicidae in Mexico, of which some are vectors of arthropod-borne viruses such as Zika virus, dengue virus, chikungunya virus, and West Nile virus. Thus, the identification of mosquito feeding preferences is paramount to understanding of vector-host-pathogen interactions that, in turn, can aid the control of disease outbreaks. Typically, DNA and RNA are extracted separately for animal (insects and blood meal hosts) and viral identification, but this study demonstrates that multiple organisms can be analyzed from a single RNA extract. For the first time, residual DNA present in standard RNA extracts was analyzed by DNA barcoding in concert with Sanger and next-generation sequencing (NGS) to identify both the mosquito species and the source of their meals in blood-fed females caught in seven sylvan communities in Chiapas State, Mexico. While mosquito molecular identification involved standard barcoding methods, the sensitivity of blood meal identification was maximized by employing short primers with NGS. In total, we collected 1,634 specimens belonging to 14 genera, 25 subgenera, and 61 morphospecies of mosquitoes. Of these, four species were new records for Mexico (Aedes guatemala, Ae. insolitus, Limatus asulleptus, Trichoprosopon pallidiventer), and nine were new records for Chiapas State. DNA barcode sequences for >300 bp of the COI gene were obtained from 291 specimens, whereas 130 bp sequences were recovered from another 179 specimens. High intraspecific divergence values (>2%) suggesting cryptic species complexes were observed in nine taxa: Anopheles eiseni (5.39%), An. pseudopunctipennis (2.79%), Ae. podographicus (4.05%), Culex eastor (4.88%), Cx. erraticus (2.28%), Toxorhynchites haemorrhoidalis (4.30%), Tr. pallidiventer (4.95%), Wyeomyia adelpha/Wy. guatemala (7.30%), and Wy. pseudopecten (4.04%). The study increased the number of mosquito species known from 128 species to 138 species for Chiapas State, and 239 for Mexico as a whole. Blood meal analysis showed that Aedes angustivittatus fed on ducks and chicken, whereas Psorophora albipes fed on humans. Culex quinquefasciatus fed on diverse hosts including chicken, human, turkey, and Mexican grackle. No arbovirus RNA was detected by reverse transcriptase-polymerase chain reaction in the surveyed specimens. This study demonstrated, for the first time, that residual DNA present in RNA blood meal extracts can be used to identify host vectors, highlighting the important role of molecular approaches in both vector identification and revealing host-vector-pathogen interactions.
RESUMEN
The reliable taxonomic identification of organisms through DNA sequence data requires a well parameterized library of curated reference sequences. However, it is estimated that just 15% of described animal species are represented in public sequence repositories. To begin to address this deficiency, we provide DNA barcodes for 1,500,003 animal specimens collected from 23 terrestrial and aquatic ecozones at sites across Canada, a nation that comprises 7% of the planet's land surface. In total, 14 phyla, 43 classes, 163 orders, 1123 families, 6186 genera, and 64,264 Barcode Index Numbers (BINs; a proxy for species) are represented. Species-level taxonomy was available for 38% of the specimens, but higher proportions were assigned to a genus (69.5%) and a family (99.9%). Voucher specimens and DNA extracts are archived at the Centre for Biodiversity Genomics where they are available for further research. The corresponding sequence and taxonomic data can be accessed through the Barcode of Life Data System, GenBank, the Global Biodiversity Information Facility, and the Global Genome Biodiversity Network Data Portal.
Asunto(s)
Código de Barras del ADN Taxonómico , Invertebrados/clasificación , Animales , Biodiversidad , CanadáRESUMEN
Correct mosquito species identification is essential for mosquito and disease control programs. However, this is complicated by the difficulties in morphologically identifying some mosquito species. In this study, variation of a partial sequence of the cytochrome c oxidase unit I (COI) gene was used for the molecular identification of British mosquito species and to facilitate the discovery of cryptic diversity, and monitoring invasive species. Three DNA extraction methods were compared to obtain DNA barcodes from adult specimens. In total, we analyzed 42 species belonging to the genera Aedes Meigen, 1818 (21 species), Anopheles Meigen, 1818 (7 species), Coquillettidia Theobald, 1904 (1 species), Culex Linnaeus, 1758 (6 species), Culiseta Felt, 1904 (7 species), and Orthopodomyia Theobald, 1904 (1 species). Intraspecific genetic divergence ranged from 0% to 5.4%, while higher interspecific divergences were identified between Aedesgeminus Peus, 1971/Culisetalitorea (Shute, 1928) (24.6%) and Ae.geminus/An.plumbeus Stephens, 1828 (22.5%). Taxonomic discrepancy was shown between An.daciae Linton, Nicolescu & Harbach, 2004 and An.messeae Falleroni, 1828 indicating the poor resolution of the COI DNA barcoding region in separating these taxa. Other species such as Ae.cantans (Meigen, 1818)/Ae.annulipes (Meigen, 1830) showed similar discrepancies indicating some limitation of this genetic marker to identify certain mosquito species. The combination of morphology and DNA barcoding is an effective approach for the identification of British mosquitoes, for invasive mosquitoes posing a threat to the UK, and for the detection of hidden diversity within species groups.
RESUMEN
A series of 60 nitrobenzonitrile analogues of the anti-viral agent MDL-860 were synthesized (50 of which are new) and evaluated for their activity against three types of enteroviruses (coxsackievirus B1, coxsackievirus B3 and poliovirus 1). Among them, six diaryl ethers (20e, 27e, 28e, 29e, 33e and 35e) demonstrated high in vitro activity (SIâ¯>â¯50) towards at least one of the tested viruses and very low cytotoxicity against human cells. Compound 27e possesses the broadest spectrum of activity towards all tested viruses in the same way as MDL-860 does. The most active derivatives (27e, 29e and 35e) against coxsackievirus B1 were tested in vivo in newborn mice experimentally infected with 20 MLD50 of coxsackievirus B1. Compound 29e showed promising in vivo activity (protection index 26% and 4â¯days lengthening of mean survival time). QSAR analysis of the substituent effects on the in vitro cytotoxicity (CC50) and anti-viral activity of the nitrobenzonitrile derivatives was carried out and adequate QSAR models for the anti-viral activity of the compounds against poliovirus 1 and coxsackievirus B1 were constructed.
Asunto(s)
Antivirales/farmacología , Nitrilos/farmacología , Poliovirus/efectos de los fármacos , Antivirales/síntesis química , Antivirales/química , Línea Celular , Cristalografía por Rayos X , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nitrilos/síntesis química , Nitrilos/química , Relación Estructura-Actividad CuantitativaRESUMEN
BACKGROUND: Blackflies have negative impact on public and animal health due to the haematophagous habit of females. In recent times, in some regions in Spain, blackfly outbreaks are becoming more and more frequent, threatening the public health. However, there is still a paucity of data concerning the Spanish blackfly fauna. Correct identification of species is of paramount importance in order to provide correct information on species distribution, biology and behaviour, so that control measures could be implemented appropriately. METHODS: Blackflies specimens (larvae, pupae, reared adults and biting females) were collected in the period 2015-2017 in and near rivers and streams from different regions in Spain. A modified Hotshot technique was used for the DNA extraction and the cox1 DNA barcoding region of the cytochrome c oxidase subunit 1 was sequenced from the specimens collected. RESULTS: In total, we collected 239 specimens representing 22 species. Of these, six species are new records for the Aragón region: P. tomosvaryi, S. bertrandi, S. galloprovinciale, S. lineatum, S. rubzovianum and S. xanthinum. Cox1 DNA barcode sequences for 21 species were recovered, including four species of the genus Prosimulium and 17 species of the genus Simulium [Boophthora (1 species), Eusimulium (1 species), Nevermannia (4 species), Simulium (s.s.) (6 species), Trichodagmia (1 species) and Wilhelmia (4 species)]. For the first time the complete DNA barcodes for five species (P. tomosvaryi, S. carthusiense, S. brevidens, S. monticola and S. sergenti) were registered. Most of the specimens belonging to the same recognized species were clustered together in the neighbour-joining tree, except for S. argyreatum, S. monticola and S. variegatum. The overall genetic distance in the dataset was 0.14%. The average of the intraspecific genetic divergence within the different taxa was 1.47% (0.05-3.96%). In contrast, the interspecific divergence varied between 2.50-22.0%. CONCLUSIONS: In this study we assessed the use of the cox1 DNA barcoding region for the identification of species of blackflies in Spain. Our results showed that combining DNA barcoding with morphology enhanced our taxonomic rationale in identifying the blackflies in the country.
Asunto(s)
Código de Barras del ADN Taxonómico , Complejo IV de Transporte de Electrones/genética , Simuliidae/genética , Distribución Animal , Animales , Biodiversidad , Variación Genética , Proteínas de Insectos/genética , Filogenia , España , Especificidad de la EspecieRESUMEN
A series of twelve novel compounds, analogues of antiviral agent MDL-860 were synthesized and their antiviral activity was evaluated in vitro against enteroviruses poliovirus 1 (PV1), Coxsackieviruses B1 (CVB1) and Coxsackieviruses B3 (CVB3). Compounds 14, 24 and 25 manifested strong antiviral effects against CVB1 and PV1 (SI values of 405 and 118 for CVB1 and PV1 respectively). In contrast to the wide anti-enteroviral activity of MDL-860, these three compounds were inactive against CVB3. Compounds 14, 24 and 25 along with MDL-860 were tested in vivo in mice infected with CVB1. Marked protective effects of compounds 14 and 24 were established, PI values of 50% and 33.3%, respectively. In addition, almost all of the tested compounds manifested very low toxicity.
Asunto(s)
Antivirales/farmacología , Infecciones por Enterovirus/tratamiento farmacológico , Enterovirus/efectos de los fármacos , Nitrilos/farmacología , Animales , Antivirales/síntesis química , Antivirales/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nitrilos/síntesis química , Nitrilos/química , Relación Estructura-ActividadRESUMEN
Thirty-four species of Culicidae are present in the UK, of which 15 have been implicated as potential vectors of arthropod-borne viruses such as West Nile virus. Identification of mosquito feeding preferences is paramount to the understanding of vector-host-pathogen interactions which, in turn, would assist in the control of disease outbreaks. Results are presented on the application of DNA barcoding for vertebrate species identification in blood-fed female mosquitoes in rural locations. Blood-fed females (n = 134) were collected in southern England from rural sites and identified based on morphological criteria. Blood meals from 59 specimens (44%) were identified as feeding on eight hosts: European rabbit, cow, human, barn swallow, dog, great tit, magpie and blackbird. Analysis of the cytochrome c oxidase subunit I mtDNA barcoding region and the internal transcribed spacer 2 rDNA region of the specimens morphologically identified as Anopheles maculipennis s.l. revealed the presence of An. atroparvus and An. messeae. A similar analysis of specimens morphologically identified as Culex pipiens/Cx. torrentium showed all specimens to be Cx. pipiens (typical form). This study demonstrates the importance of using molecular techniques to support species-level identification in blood-fed mosquitoes to maximize the information obtained in studies investigating host feeding patterns.
Asunto(s)
Culicidae , Animales , Anopheles , Bovinos , Culex , Perros , Inglaterra , Femenino , Humanos , Insectos Vectores , Análisis de Secuencia de ADN , Reino Unido , Virus del Nilo OccidentalRESUMEN
Various metal phthalocyanines have been studied for their capacity for photodynamic effects on viruses. Two newly synthesized water-soluble phthalocyanine Zn(II) complexes with different charges, cationic methylpyridyloxy-substituted Zn(II)- phthalocyanine (ZnPcMe) and anionic sulfophenoxy-substituted Zn(II)-phthalocyanine (ZnPcS), were used for photoinactivation of two DNA-containing enveloped viruses (herpes simplex virus type 1 and vaccinia virus), two RNA-containing enveloped viruses (bovine viral diarrhea virus and Newcastle disease virus) and two nude viruses (the enterovirus Coxsackie B1, a RNA-containing virus, and human adenovirus 5, a DNA virus). These two differently charged phthalocyanine complexes showed an identical marked virucidal effect against herpes simplex virus type 1, which was one and the same at an irradiation lasting 5 or 20 min (Δlog=3.0 and 4.0, respectively). Towards vaccinia virus this effect was lower, Δlog=1.8 under the effect of ZnPcMe and 2.0 for ZnPcS. Bovine viral diarrhea virus manifested a moderate sensitivity to ZnPcMe (Δlog=1.8) and a pronounced one to ZnPcS at 5- and 20-min irradiation (Δlog=5.8 and 5.3, respectively). The complexes were unable to inactivate Newcastle disease virus, Coxsackievirus B1 and human adenovirus type 5.
Asunto(s)
Complejos de Coordinación/síntesis química , Indoles/síntesis química , Fármacos Fotosensibilizantes/síntesis química , Tolerancia a Radiación/fisiología , Inactivación de Virus , Zinc/química , Adenovirus Humanos/efectos de los fármacos , Adenovirus Humanos/crecimiento & desarrollo , Adenovirus Humanos/efectos de la radiación , Aniones , Cationes , Complejos de Coordinación/farmacología , Virus de la Diarrea Viral Bovina Tipo 1/efectos de los fármacos , Virus de la Diarrea Viral Bovina Tipo 1/crecimiento & desarrollo , Virus de la Diarrea Viral Bovina Tipo 1/efectos de la radiación , Enterovirus Humano B/efectos de los fármacos , Enterovirus Humano B/crecimiento & desarrollo , Enterovirus Humano B/efectos de la radiación , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/crecimiento & desarrollo , Herpesvirus Humano 1/efectos de la radiación , Indoles/farmacología , Isoindoles , Láseres de Semiconductores , Luz , Virus de la Enfermedad de Newcastle/efectos de los fármacos , Virus de la Enfermedad de Newcastle/crecimiento & desarrollo , Virus de la Enfermedad de Newcastle/efectos de la radiación , Fármacos Fotosensibilizantes/farmacología , Especificidad de la Especie , Electricidad Estática , Virus Vaccinia/efectos de los fármacos , Virus Vaccinia/crecimiento & desarrollo , Virus Vaccinia/efectos de la radiaciónRESUMEN
Wild berry species are known to exhibit a wide range of pharmacological activities. They have long been traditionally applied for their antiseptic, antimicrobial, cardioprotective and antioxidant properties. The aim of the present study is to reveal the potential for selective antiviral activity of total methanol extracts, as well as that of the anthocyanins and the non-anthocyanins from the following wild berries picked in Bulgaria: strawberry (Fragaria vesca L.) and raspberry (Rubus idaeus L.) of the Rosaceae plant family, and bilberry (Vaccinium myrtillis L.) and lingonberry (Vaccinium vitis-idaea L) of the Ericaceae. The antiviral effect has been tested against viruses that are important human pathogens and for which chemotherapy and/or chemoprophylaxis is indicated, namely poliovirus type 1 (PV-1) and coxsackievirus B1 (CV-B1) from the Picornaviridae virus family, human respiratory syncytial virus A2 (HRSV-A2) from the Paramyxoviridae and influenza virus A/H3N2 of Orthomyxoviridae. Wild berry fruits are freeze-dried and ground, then total methanol extracts are prepared. Further the extracts are fractioned by solid phase extraction and the non-anthocyanin and anthocyanin fractions are eluted. The in vitro antiviral effect is examined by the virus cytopathic effect (CPE) inhibition test. The results reveal that the total extracts of all tested berry fruits inhibit the replication of CV-B1 and influenza A virus. CV-B1 is inhibited to the highest degree by both bilberry and strawberry, as well as by lingonberry total extracts, and influenza A by bilberry and strawberry extracts. Anthocyanin fractions of all wild berries strongly inhibit the replication of influenza virus A/H3N2. Given the obtained results it is concluded that wild berry species are a valuable resource of antiviral substances and the present study should serve as a basis for further detailed research on the matter.