Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Med Genomics ; 12(1): 111, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337399

RESUMEN

BACKGROUND: Chromosomal microarray analysis has been shown to be a valuable and cost effective assay for elucidating copy number variants (CNVs) in children with intellectual disability and developmental delay (ID/DD). METHODS: In our study, we performed array-based comparative genomic hybridization (array-CGH) analysis using oligonucleotide-based platforms in 542 Czech patients with ID/DD, autism spectrum disorders and multiple congenital abnormalities. Prior to the array-CGH analysis, all the patients were first examined karyotypically using G-banding. The presence of CNVs and their putative derivation was confirmed using fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA) and predominantly relative quantitative polymerase chain reaction (qPCR). RESULTS: In total, 5.9% (32/542) patients were positive for karyotypic abnormalities. Pathogenic/likely pathogenic CNVs were identified in 17.7% of them (96/542), variants of uncertain significance (VOUS) were detected in 4.8% (26/542) and likely benign CNVs in 9.2% of cases (50/542). We identified 6.6% (36/542) patients with known recurrent microdeletion (24 cases) and microduplication (12 cases) syndromes, as well as 4.8% (26/542) patients with non-recurrent rare microdeletions (21 cases) and microduplications (5 cases). In the group of patients with submicroscopic pathogenic/likely pathogenic CNVs (13.3%; 68/510) we identified 91.2% (62/68) patients with one CNV, 5.9% (4/68) patients with two likely independent CNVs and 2.9% (2/68) patients with two CNVs resulting from cryptic unbalanced translocations. Of all detected CNVs, 21% (31/147) had a de novo origin, 51% (75/147) were inherited and 28% (41/147) of unknown origin. In our cohort pathogenic/likely pathogenic microdeletions were more frequent than microduplications (69%; 51/74 vs. 31%; 23/74) ranging in size from 0.395 Mb to 10.676 Mb (microdeletions) and 0.544 Mb to 8.156 Mb (microduplications), but their sizes were not significantly different (P = 0.83). The pathogenic/likely pathogenic CNVs (median 2.663 Mb) were significantly larger than benign CNVs (median 0.394 Mb) (P < 0.00001) and likewise the pathogenic/likely pathogenic CNVs (median 2.663 Mb) were significantly larger in size than VOUS (median 0.469 Mb) (P < 0.00001). CONCLUSIONS: Our results confirm the benefit of array-CGH in the current clinical genetic diagnostics leading to identification of the genetic cause of ID/DD in affected children.


Asunto(s)
Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Adolescente , Niño , Preescolar , Estudios de Cohortes , República Checa , Femenino , Humanos , Lactante , Recién Nacido , Masculino
2.
Mol Med Rep ; 20(1): 505-512, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31180560

RESUMEN

De novo sequence variants, including truncating and splicing variants, in the additional sex­combs like 3 gene (ASXL3) have been described as the cause of Bainbridge­Ropers syndrome (BRS). This pathology is characterized by delayed psychomotor development, severe intellectual disability, growth delay, hypotonia and facial dimorphism. The present study reports a case of a girl (born in 2013) with severe global developmental delay, central hypotonia, microcephaly and poor speech. The proband was examined using a multi­step molecular diagnostics algorithm, including karyotype and array­comparative genomic hybridization analysis, with negative results. Therefore, the proband and her unaffected parents were enrolled for a pilot study using targeted next­generation sequencing technology (NGS) with gene panel ClearSeq Inherited DiseaseXT and subsequent validation by Sanger sequencing. A novel de novo heterozygous frameshift variant in the ASXL3 gene (c.3006delT, p.R1004Efs*21), predicted to result in a premature termination codon, was identified. In conclusion, the present study demonstrated that targeted NGS using a suitable, gene­rich panel may provide a conclusive molecular genetics diagnosis in children with severe global developmental delays.


Asunto(s)
Discapacidades del Desarrollo/genética , Microcefalia/genética , Hipotonía Muscular/genética , Factores de Transcripción/genética , Niño , Femenino , Mutación del Sistema de Lectura , Humanos , Masculino , Linaje , Proyectos Piloto , Trastornos del Habla/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...