Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 62(24): 3554-3567, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38061393

RESUMEN

Electron bifurcation is an energy-conservation mechanism in which a single enzyme couples an exergonic reaction with an endergonic one. Heterotetrameric EtfABCX drives the reduction of low-potential ferredoxin (E°' ∼ -450 mV) by oxidation of the midpotential NADH (E°' = -320 mV) by simultaneously coupling the reaction to reduction of the high-potential menaquinone (E°' = -74 mV). Electron bifurcation occurs at the NADH-oxidizing bifurcating-flavin adenine dinucleotide (BF-FAD) in EtfA, which has extremely crossed half-potentials and passes the first, high-potential electron to an electron-transferring FAD and via two iron-sulfur clusters eventually to menaquinone. The low-potential electron on the BF-FAD semiquinone simultaneously reduces ferredoxin. We have expressed the genes encodingThermotoga maritimaEtfABCX in E. coli and purified the EtfABCX holoenzyme and the EtfAB subcomplex. The bifurcation activity of EtfABCX was demonstrated by using electron paramagnetic resonance (EPR) to follow accumulation of reduced ferredoxin. To elucidate structural factors that impart the bifurcating ability, EPR and NADH titrations monitored by visible spectroscopy and dye-linked enzyme assays have been employed to characterize four conserved residues, R38, P239, and V242 in EtfA and R140 in EtfB, in the immediate vicinity of the BF-FAD. The R38, P239, and V242 variants showed diminished but still significant bifurcation activity. Despite still being partially reduced by NADH, the R140 variant had no bifurcation activity, and electron transfer to its two [4Fe-4S] clusters was prevented. The role of R140 is discussed in terms of the bifurcation mechanism in EtfABCX and in the other three families of bifurcating enzymes.


Asunto(s)
Ferredoxinas , Thermotoga maritima , Ferredoxinas/metabolismo , NAD/metabolismo , Electrones , Flavina-Adenina Dinucleótido/química , Escherichia coli/genética , Escherichia coli/metabolismo , Vitamina K 2 , Bacterias/metabolismo , Transporte de Electrón , Oxidación-Reducción , Archaea/metabolismo
2.
J Am Chem Soc ; 145(47): 25850-25863, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37967365

RESUMEN

The oxygen-tolerant and molybdenum-dependent formate dehydrogenase FdsDABG from Cupriavidus necator is capable of catalyzing both formate oxidation to CO2 and the reverse reaction (CO2 reduction to formate) at neutral pH, which are both reactions of great importance to energy production and carbon capture. FdsDABG is replete with redox cofactors comprising seven Fe/S clusters, flavin mononucleotide, and a molybdenum ion coordinated by two pyranopterin dithiolene ligands. The redox potentials of these centers are described herein and assigned to specific cofactors using combinations of potential-dependent continuous wave and pulse EPR spectroscopy and UV/visible spectroelectrochemistry on both the FdsDABG holoenzyme and the FdsBG subcomplex. These data represent the first redox characterization of a complex metal dependent formate dehydrogenase and provide an understanding of the highly efficient catalytic formate oxidation and CO2 reduction activity that are associated with the enzyme.


Asunto(s)
Cupriavidus necator , Molibdeno , Molibdeno/química , Formiato Deshidrogenasas/química , Cupriavidus necator/metabolismo , Dióxido de Carbono/química , Oxidación-Reducción , Formiatos
3.
J Phys Chem B ; 127(39): 8382-8392, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37728992

RESUMEN

The bacterial molybdenum (Mo)-containing formate dehydrogenase (FdsDABG) from Cupriavidus necator is a soluble NAD+-dependent enzyme belonging to the DMSO reductase family. The holoenzyme is complex and possesses nine redox-active cofactors including a bis(molybdopterin guanine dinucleotide) (bis-MGD) active site, seven iron-sulfur clusters, and 1 equiv of flavin mononucleotide (FMN). FdsDABG catalyzes the two-electron oxidation of HCOO- (formate) to CO2 and reversibly reduces CO2 to HCOO- under physiological conditions close to its thermodynamic redox potential. Here we develop an electrocatalytically active formate oxidation/CO2 reduction system by immobilizing FdsDABG on a glassy carbon electrode in the presence of coadsorbents such as chitosan and glutaraldehyde. The reversible enzymatic interconversion between HCOO- and CO2 by FdsDABG has been realized with cyclic voltammetry using a range of artificial electron transfer mediators, with methylene blue (MB) and phenazine methosulfate (PMS) being particularly effective as electron acceptors for FdsDABG in formate oxidation. Methyl viologen (MV) acts as both an electron acceptor (MV2+) in formate oxidation and an electron donor (MV+•) for CO2 reduction. The catalytic voltammetry was reproduced by electrochemical simulation across a range of sweep rates and concentrations of formate and mediators to provide new insights into the kinetics of the FdsDABG catalytic mechanism.


Asunto(s)
Cupriavidus necator , Formiato Deshidrogenasas , Formiato Deshidrogenasas/química , Dióxido de Carbono/química , Oxidación-Reducción , Formiatos
4.
J Biol Chem ; 299(7): 104853, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37220854

RESUMEN

We have investigated the equilibrium properties and rapid-reaction kinetics of the isolated butyryl-CoA dehydrogenase (bcd) component of the electron-bifurcating crotonyl-CoA-dependent NADH:ferredoxin oxidoreductase (EtfAB-bcd) from Megasphaera elsdenii. We find that a neutral FADH• semiquinone accumulates transiently during both reduction with sodium dithionite and with NADH in the presence of catalytic concentrations of EtfAB. In both cases full reduction of bcd to the hydroquinone is eventually observed, but the accumulation of FADH• indicates that a substantial portion of reduction occurs in sequential one-electron processes rather than a single two-electron event. In rapid-reaction experiments following the reaction of reduced bcd with crotonyl-CoA and oxidized bcd with butyryl-CoA, long-wavelength-absorbing intermediates are observed that are assigned to bcdred:crotonyl-CoA and bcdox:butyryl-CoA charge-transfer complexes, demonstrating their kinetic competence in the course of the reaction. In the presence of crotonyl-CoA there is an accumulation of semiquinone that is unequivocally the anionic FAD•- rather than the neutral FADH• seen in the absence of substrate, indicating that binding of substrate/product results in ionization of the bcd semiquinone. In addition to fully characterizing the rapid-reaction kinetics of both the oxidative and reductive half-reactions, our results demonstrate that one-electron processes play an important role in the reduction of bcd in EtfAB-bcd.


Asunto(s)
Butiril-CoA Deshidrogenasa , Megasphaera elsdenii , Oxidorreductasas , Butiril-CoA Deshidrogenasa/química , Butiril-CoA Deshidrogenasa/metabolismo , Electrones , Ferredoxinas/metabolismo , Cinética , Megasphaera elsdenii/enzimología , NAD/metabolismo , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Estructura Terciaria de Proteína , Modelos Moleculares
5.
Methods Enzymol ; 685: 531-550, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37245914

RESUMEN

Electron-bifurcating flavoproteins catalyze the tightly coupled reduction of high- and low-potential acceptors using a median-potential electron donor, and are invariably complex systems with multiple redox-active centers in two or more subunits. Methods are described that permit, in favorable cases, the deconvolution of spectral changes associated with reduction of specific centers, making it possible to dissect the overall process of electron bifurcation into individual, discrete steps.


Asunto(s)
Electrones , Flavoproteínas , Oxidación-Reducción , Catálisis , Transporte de Electrón
6.
J Biol Chem ; 299(12): 105403, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38229399

RESUMEN

We have investigated the kinetics of NAD+-dependent NADPH:ferredoxin oxidoreductase (NfnI), a bifurcating transhydrogenase that takes two electron pairs from NADPH to reduce two ferredoxins and one NAD+ through successive bifurcation events. NADPH reduction takes place at the bifurcating FAD of NfnI's large subunit, with high-potential electrons transferred to the [2Fe-2S] cluster and S-FADH of the small subunit, ultimately on to NAD+; low-potential electrons are transferred to two [4Fe-4S] clusters of the large subunit and on to ferredoxin. Reduction of NfnI by NADPH goes to completion only at higher pH, with a limiting kred of 36 ± 1.6 s-1 and apparent KdNADPH of 5 ± 1.2 µM. Reduction of one of the [4Fe-4S] clusters of NfnI occurs within a second, indicating that in the absence of NAD+, the system can bifurcate and generate low-potential electrons without NAD+. When enzyme is reduced by NADPH in the absence of NAD+ but the presence of ferredoxin, up to three equivalents of ferredoxin become reduced, although the reaction is considerably slower than seen during steady-state turnover. Bifurcation appears to be limited by transfer of the first, high-potential electron into the high-potential pathway. Ferredoxin reduction without NAD+ demonstrates that electron bifurcation is an intrinsic property of the bifurcating FAD and is not dependent on the simultaneous presence of NAD+ and ferredoxin. The tight coupling between NAD+ and ferredoxin reduction observed under multiple-turnover conditions is instead simply due to the need to remove reducing equivalents from the high-potential electron pathway under multiple-turnover conditions.


Asunto(s)
Proteínas Arqueales , Ferredoxinas , Oxidorreductasas , Pyrococcus furiosus , Ferredoxinas/metabolismo , Cinética , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Pyrococcus furiosus/enzimología , Proteínas Arqueales/metabolismo
7.
Methods Enzymol ; 666: 373-412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465925

RESUMEN

A description is provided of the contributions made to our understanding of molybdenum-containing enzymes through the application of electron paramagnetic resonance spectroscopy and related methods, by way of illustrating how these can be applied to better understand enzyme structure and function. An emphasis is placed on the use of EPR to identify both the coordination environment of the molybdenum coordination sphere as well as the structures of paramagnetic intermediates observed transiently in the course of reaction that have led to the elucidation of reaction mechanism.


Asunto(s)
Molibdeno , Espectroscopía de Resonancia por Spin del Electrón
8.
J Biol Chem ; 298(6): 101927, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35429498

RESUMEN

The EtfAB components of two bifurcating flavoprotein systems, the crotonyl-CoA-dependent NADH:ferredoxin oxidoreductase from the bacterium Megasphaera elsdenii and the menaquinone-dependent NADH:ferredoxin oxidoreductase from the archaeon Pyrobaculum aerophilum, have been investigated. With both proteins, we find that removal of the electron-transferring flavin adenine dinucleotide (FAD) moiety from both proteins results in an uncrossing of the reduction potentials of the remaining bifurcating FAD; this significantly stabilizes the otherwise very unstable semiquinone state, which accumulates over the course of reductive titrations with sodium dithionite. Furthermore, reduction of both EtfABs depleted of their electron-transferring FAD by NADH was monophasic with a hyperbolic dependence of reaction rate on the concentration of NADH. On the other hand, NADH reduction of the replete proteins containing the electron-transferring FAD was multiphasic, consisting of a fast phase comparable to that seen with the depleted proteins followed by an intermediate phase that involves significant accumulation of FAD⋅-, again reflecting uncrossing of the half-potentials of the bifurcating FAD. This is then followed by a slow phase that represents the slow reduction of the electron-transferring FAD to FADH-, with reduction of the now fully reoxidized bifurcating FAD by a second equivalent of NADH. We suggest that the crossing and uncrossing of the reduction half-potentials of the bifurcating FAD is due to specific conformational changes that have been structurally characterized.


Asunto(s)
Flavoproteínas Transportadoras de Electrones , Oxidorreductasas , Transporte de Electrón , Flavoproteínas Transportadoras de Electrones/química , Flavoproteínas Transportadoras de Electrones/metabolismo , Ferredoxinas/metabolismo , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Flavinas/metabolismo , NAD/metabolismo , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Estructura Terciaria de Proteína
9.
J Inorg Biochem ; 231: 111788, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35313132

RESUMEN

The nature of air-inactivation of the formate dehydrogenase FdsDABG from Cupriavidus necator has been investigated. It is found that superoxide, generated in the reaction of reduced enzyme with oxygen, is responsible for the loss of activity and that superoxide dismutase protects the enzyme from air-inactivation. Inhibition appears to be due to the reaction of superoxide with the catalytically essential MoS group of the enzyme's molybdenum center in such a way that generates sulfite. SYNOPSIS: Superoxide generated in the reaction of reduced formate dehydrogenase FdsDABG from Cupriavidus necator with O2 is found to be responsible for the loss of activity. Catalytic amounts of superoxide dismutase are found to protect FdsDABG just as well as more generally used stabilizing inhibitors such as nitrate.


Asunto(s)
Cupriavidus necator , Formiato Deshidrogenasas , Catálisis , Superóxido Dismutasa , Superóxidos
10.
Protein Sci ; 31(2): 432-442, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767267

RESUMEN

Antibiotic resistance is a continually growing challenge in the treatment of various bacterial infections worldwide. New drugs and new drug targets are necessary to curb the threat of infectious diseases caused by multidrug-resistant pathogens. The tryptophan biosynthesis pathway is essential for bacterial growth but is absent in higher animals and humans. Drugs that can inhibit the bacterial biosynthesis of tryptophan offer a new class of antibiotics. In this work, we combined a structure-based strategy using in silico docking screening and molecular dynamics (MD) simulations to identify compounds targeting the α subunit of tryptophan synthase with experimental methods involving the whole-cell minimum inhibitory concentration (MIC) test, solution state NMR, and crystallography to confirm the inhibition of L-tryptophan biosynthesis. Screening 1,800 compounds from the National Cancer Institute Diversity Set I against α subunit revealed 28 compounds for experimental validation; four of the 28 hit compounds showed promising activity in MIC testing. We performed solution state NMR experiments to demonstrate that a one successful inhibitor, 3-amino-3-imino-2-phenyldiazenylpropanamide (Compound 1) binds to the α subunit. We also report a crystal structure of Salmonella enterica serotype Typhimurium tryptophan synthase in complex with Compound 1 which revealed a binding site at the αß interface of the dimeric enzyme. MD simulations were carried out to examine two binding sites for the compound. Our results show that this small molecule inhibitor could be a promising lead for future drug development.


Asunto(s)
Antibacterianos , Triptófano Sintasa , Antibacterianos/química , Antibacterianos/farmacología , Sitios de Unión , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Triptófano Sintasa/antagonistas & inhibidores , Triptófano Sintasa/química
11.
Biochemistry ; 60(42): 3173-3186, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34595921

RESUMEN

The tryptophan synthase (TS) bienzyme complexes found in bacteria, yeasts, and molds are pyridoxal 5'-phosphate (PLP)-requiring enzymes that synthesize l-Trp. In the TS catalytic cycle, switching between the open and closed states of the α- and ß-subunits via allosteric interactions is key to the efficient conversion of 3-indole-d-glycerol-3'-phosphate and l-Ser to l-Trp. In this process, the roles played by ß-site residues proximal to the PLP cofactor have not yet been fully established. ßGln114 is one such residue. To explore the roles played by ßQ114, we conducted a detailed investigation of the ßQ114A mutation on the structure and function of tryptophan synthase. Initial steady-state kinetic and static ultraviolet-visible spectroscopic analyses showed the Q to A mutation impairs catalytic activity and alters the stabilities of intermediates in the ß-reaction. Therefore, we conducted X-ray structural and solid-state nuclear magnetic resonance spectroscopic studies to compare the wild-type and ßQ114A mutant enzymes. These comparisons establish that the protein structural changes are limited to the Gln to Ala replacement, the loss of hydrogen bonds among the side chains of ßGln114, ßAsn145, and ßArg148, and the inclusion of waters in the cavity created by substitution of the smaller Ala side chain. Because the conformations of the open and closed allosteric states are not changed by the mutation, we hypothesize that the altered properties arise from the lost hydrogen bonds that alter the relative stabilities of the open (ßT state) and closed (ßR state) conformations of the ß-subunit and consequently alter the distribution of intermediates along the ß-subunit catalytic path.


Asunto(s)
Proteínas Bacterianas/química , Triptófano Sintasa/química , Regulación Alostérica/genética , Proteínas Bacterianas/genética , Biocatálisis , Cinética , Mutagénesis Sitio-Dirigida , Mutación , Salmonella typhimurium/enzimología , Triptófano Sintasa/genética
12.
Arch Biochem Biophys ; 701: 108793, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33587905

RESUMEN

We have undertaken a spectral deconvolution of the three FADs of EtfAB/bcd to the spectral changes seen in the course of reduction, including the spectrally distinct anionic and neutral semiquinone states of electron-transferring and bcd flavins. We also demonstrate that, unlike similar systems, no charge-transfer complex is observed on titration of the reduced M. elsdenii EtfAB with NAD+. Finally, and significantly, we find that removal of the et FAD from EtfAB results in an uncrossing of the half-potentials of the bifurcating FAD that remains in the protein, as reflected in the accumulation of substantial FAD•- in the course of reductive titrations of the depleted EtfAB with sodium dithionite.


Asunto(s)
Acilcoenzima A/química , Proteínas Bacterianas/química , Megasphaera elsdenii/enzimología , NADH NADPH Oxidorreductasas/química , NAD/química , Acilcoenzima A/genética , Proteínas Bacterianas/genética , Megasphaera elsdenii/genética , NAD/genética , NADH NADPH Oxidorreductasas/genética , Oxidación-Reducción
13.
J Biol Chem ; 295(19): 6570-6585, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32249211

RESUMEN

Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD+-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium Cupriavidus necator H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, Fe4S4 in FdsB and Fe2S2 in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNH•, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH-, initially formed via NADH-mediated reduction, to the Fe2S2 cluster. This Fe2S2 cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the re-face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD+ binding in proper NADH dehydrogenases.


Asunto(s)
Proteínas Bacterianas/química , Cupriavidus necator/enzimología , Formiato Deshidrogenasas/química , Proteínas Hierro-Azufre/química , Complejos Multienzimáticos/química , Dominio Catalítico , Cristalografía por Rayos X , Mononucleótido de Flavina/química , Cinética , NAD/química
14.
Biochim Biophys Acta Bioenerg ; 1861(1): 148118, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31734195

RESUMEN

CO dehydrogenase (CODH) from the Gram-negative bacterium Oligotropha carboxidovorans is a complex metalloenzyme from the xanthine oxidase family of molybdenum-containing enzymes, bearing a unique binuclear Mo-S-Cu active site in addition to two [2Fe-2S] clusters (FeSI and FeSII) and one equivalent of FAD. CODH catalyzes the oxidation of CO to CO2 with the concomitant introduction of reducing equivalents into the quinone pool, thus enabling the organism to utilize CO as sole source of both carbon and energy. Using a variety of EPR monitored redox titrations and spectroelectrochemistry, we report the redox potentials of CO dehydrogenase at pH 7.2 namely MoVI/V, MoV/IV, FeSI2+/+, FeSII2+/+, FAD/FADH and FADH/FADH-. These potentials are systematically higher than the corresponding potentials seen for other members of the xanthine oxidase family of Mo enzymes, and are in line with CODH utilising the higher potential quinone pool as an electron acceptor instead of pyridine nucleotides. CODH is also active when immobilised on a modified Au working electrode as demonstrated by cyclic voltammetry in the presence of CO.


Asunto(s)
Aldehído Oxidorreductasas/química , Bradyrhizobiaceae/enzimología , Metaloproteínas/química , Complejos Multienzimáticos/química , Aldehído Oxidorreductasas/metabolismo , Catálisis , Dominio Catalítico , Cobalto/química , Cobalto/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Metaloproteínas/metabolismo , Molibdeno/química , Molibdeno/metabolismo , Complejos Multienzimáticos/metabolismo
15.
J Biol Inorg Chem ; 24(6): 889-898, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31463592

RESUMEN

The formate dehydrogenase enzyme from Cupriavidus necator (FdsABG) carries out the two-electron oxidation of formate to CO2, but is also capable of reducing CO2 back to formate, a potential biofuel. FdsABG is a heterotrimeric enzyme that performs this transformation using nine redox-active cofactors: a bis(molybdopterin guanine dinucleotide) (bis-MGD) at the active site coupled to seven iron-sulfur clusters, and one equivalent of flavin mononucleotide (FMN). To better understand the pathway of electron flow in FdsABG, the reduction potentials of the various cofactors were examined through direct electrochemistry. Given the redundancy of cofactors, a truncated form of the FdsA subunit was developed that possesses only the bis-MGD active site and a singular [4Fe-4S] cluster. Electrochemical characterization of FdsABG compared to truncated FdsA shows that the measured reduction potentials are remarkably similar despite the truncation with two observable features at - 265 mV and - 455 mV vs SHE, indicating that the voltammetry of the truncated enzyme is representative of the reduction potentials of the intact heterotrimer. By producing truncated FdsA without the necessary maturation factors required for bis-MGD insertion, a form of the truncated FdsA that possesses only the [4Fe-4S] was produced, which gives a single voltammetric feature at - 525 mV, allowing the contributions of the molybdenum cofactor to be associated with the observed feature at - 265 mV. This method allowed for the deconvolution of reduction potentials for an enzyme with highly complex cofactor content to know more about the thermodynamic landscape of catalysis.


Asunto(s)
Cupriavidus necator/enzimología , Cupriavidus necator/metabolismo , Formiato Deshidrogenasas/metabolismo , Catálisis , Coenzimas/metabolismo , Cupriavidus necator/genética , Mononucleótido de Flavina/metabolismo , Formiato Deshidrogenasas/química , Formiato Deshidrogenasas/genética , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Metaloproteínas/metabolismo , Cofactores de Molibdeno , Oxidación-Reducción , Pteridinas/metabolismo
16.
Biochem J ; 476(12): 1805-1815, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31167903

RESUMEN

In addition to nitric oxide (NO) synthases, molybdenum-dependent enzymes have been reported to reduce nitrite to produce NO. Here, we report the stoichiometric reduction in nitrite to NO by human sulfite oxidase (SO), a mitochondrial intermembrane space enzyme primarily involved in cysteine catabolism. Kinetic and spectroscopic studies provide evidence for direct nitrite coordination at the molybdenum center followed by an inner shell electron transfer mechanism. In the presence of the physiological electron acceptor cytochrome c, we were able to close the catalytic cycle of sulfite-dependent nitrite reduction thus leading to steady-state NO synthesis, a finding that strongly supports a physiological relevance of SO-dependent NO formation. By engineering SO variants with reduced intramolecular electron transfer rate, we were able to increase NO generation efficacy by one order of magnitude, providing a mechanistic tool to tune NO synthesis by SO.


Asunto(s)
Proteínas Mitocondriales/química , Óxido Nítrico/química , Nitritos/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico/genética , Nitritos/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo
17.
Biochemistry ; 58(14): 1861-1868, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30839197

RESUMEN

Direct biocatalytic conversion of CO2 to formic acid is an attractive means of reversibly storing energy in chemical bonds. Formate dehydrogenases (FDHs) are a heterogeneous group of enzymes that catalyze the oxidation of formic acid to carbon dioxide, generating two protons and two electrons. Several FDHs have recently been reported to catalyze the reverse reaction, i.e., the reduction of carbon dioxide to formic acid, under appropriate conditions. The main challenges with these enzymes are relatively low rates of CO2 reduction and high oxygen sensitivity. Our earlier studies (Yu et al. (2017) J. Biol. Chem. 292, 16872-16879) have shown that the FdsABG formate dehydrogenase from Cupriavidus necator is able to effectively catalyze the reduction of CO2, using NADH as a source of reducing equivalents, with a good oxygen tolerance. On the basis of this result, we have developed a highly thermodynamically efficient and cost-effective biocatalytic process for the transformation of CO2 to formic acid using FdsABG. We have  cloned the full-length soluble formate dehydrogenase (FdsABG) from C. necator and expressed it in Escherichia coli with a His-tag fused to the N terminus of the FdsG subunit; this overexpression system has greatly simplified the FdsABG purification process. Importantly, we have also combined this recombinant C. necator FdsABG with another enzyme, glucose dehydrogenase, for continuous regeneration of NADH for CO2 reduction and demonstrated that the combined system is highly effective in reducing CO2 to formate. The results indicate that this system shows significant promise for the future development of an enzyme-based system for the industrial reduction of CO2.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dióxido de Carbono/metabolismo , Formiato Deshidrogenasas/metabolismo , Formiatos/metabolismo , Glucosa 1-Deshidrogenasa/metabolismo , NAD/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/genética , Catálisis , Cupriavidus necator/enzimología , Cupriavidus necator/genética , Escherichia coli/genética , Formiato Deshidrogenasas/genética , Glucosa 1-Deshidrogenasa/genética , Microbiología Industrial/métodos , Cinética , Oxidación-Reducción , Proteínas Recombinantes/metabolismo
18.
Protein Sci ; 28(1): 111-122, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30120799

RESUMEN

An overview is provided of the molybdenum- and tungsten-containing enzymes that catalyze the interconversion of formate and CO2 , focusing on common structural and mechanistic themes, as well as a consideration of the manner in which the mature Mo- or W-containing cofactor is inserted into apoprotein.


Asunto(s)
Aldehído Oxidorreductasas/química , Coenzimas/química , Formiato Deshidrogenasas/química , Molibdeno/química , Tungsteno/química , Aldehído Oxidorreductasas/metabolismo , Catálisis , Coenzimas/metabolismo , Formiato Deshidrogenasas/metabolismo , Molibdeno/metabolismo , Relación Estructura-Actividad , Tungsteno/metabolismo
19.
Methods Mol Biol ; 1876: 55-63, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30317474

RESUMEN

An overview of modern methods used in the preparation and characterization of molybdenum-containing enzymes is presented, with an emphasis on those methods that have been developed over the past decade to address specific difficulties frequently encountered in studies of these enzymes.


Asunto(s)
Metaloproteínas/aislamiento & purificación , Molibdeno/química , Anaerobiosis , Metaloproteínas/química , Metaloproteínas/metabolismo , Oxígeno/metabolismo
20.
Methods Enzymol ; 613: 277-295, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30509470

RESUMEN

Two factors, climate change brought on by rising atmospheric CO2 levels and the accelerating shift toward renewable energy sources, have together worked to heighten interest in understanding how biological catalysts so effectively bring about the reduction of CO2 to formate, with potential applications for both bioremediation and energy storage. Most metal-dependent formate dehydrogenases, containing either molybdenum or tungsten in their active sites, function physiologically in the direction of formate oxidation to CO2, but it has become clear that many, if not all, are also effective in catalyzing the reverse reaction. In this chapter, we describe methods for isolating and characterizing these enzymes.


Asunto(s)
Dióxido de Carbono/metabolismo , Formiato Deshidrogenasas/metabolismo , Catálisis , Formiatos/metabolismo , Molibdeno/metabolismo , Oxidación-Reducción , Tungsteno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...