Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Cell Biol ; 89(2-3): 163-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20083325

RESUMEN

The COP9 signalosome (CSN) is an evolutionarily conserved multiprotein complex with an essential role in the development of higher eukaryotes. CSN deconjugates the ubiquitin-related modifier NEDD8 from the cullin subunit of cullin-RING type E3 ubiquitin ligases (CRLs), and CSN-mediated cullin deneddylation is required for full CRL activity. Although several plant E3 CRL functions have been shown to be compromised in Arabidopsis csn mutants, none of these functions have so far been shown to limit growth in these mutants. Here, we examine the role of CSN in the context of the E3 ubiquitin ligase SCF(SLEEPY1 (SLY1)), which promotes gibberellic acid (GA)-dependent responses in Arabidopsis thaliana. We show that csn mutants are impaired in GA- and SCF(SLY1)-dependent germination and elongation growth, and we show that these defects correlate with an accumulation and reduced turnover of an SCF(SLY1)-degradation target, the DELLA protein REPRESSOR-OF-ga1-3 (RGA). Genetic interaction studies between csn mutants and loss-of-function alleles of RGA and its functional homologue GIBBERELLIC ACID INSENSITIVE (GAI) further reveal that RGA and GAI repress defects of germination in strong csn mutants. In addition, we find that these two DELLA proteins are largely responsible for the elongation defects of a weak csn5 mutant allele. We thus conclude that an impairment of SCF(SLY1) is at least in part causative for the germination and elongation defects of csn mutants, and suggest that DELLA proteins are major growth repressors in these mutants.


Asunto(s)
Transferasas Alquil y Aril , Proteínas de Arabidopsis , Arabidopsis , Germinación , Complejos Multiproteicos , Mutación , Péptido Hidrolasas , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complejo del Señalosoma COP9 , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Germinación/genética , Giberelinas/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Fenotipo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Development ; 136(4): 627-36, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19168677

RESUMEN

The phytohormone auxin is a major determinant of plant growth and differentiation. Directional auxin transport and auxin responses are required for proper embryogenesis, organ formation, vascular development, and tropisms. Members of several protein families, including the PIN auxin efflux facilitators, have been implicated in auxin transport; however, the regulation of auxin transport by signaling proteins remains largely unexplored. We have studied a family of four highly homologous AGC protein kinases, which we designated the D6 protein kinases (D6PKs). We found that d6pk mutants have defects in lateral root initiation, root gravitropism, and shoot differentiation in axillary shoots, and that these phenotypes correlate with a reduction in auxin transport. Interestingly, D6PK localizes to the basal (lower) membrane of Arabidopsis root cells, where it colocalizes with PIN1, PIN2 and PIN4. D6PK and PIN1 interact genetically, and D6PK phosphorylates PIN proteins in vitro and in vivo. Taken together, our data show that D6PK is required for efficient auxin transport and suggest that PIN proteins are D6PK phosphorylation targets.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Polaridad Celular , Ácidos Indolacéticos/metabolismo , Transporte Biológico , Gravitropismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Mutación/genética , Fenotipo , Fosforilación , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato
3.
Plant Cell ; 19(4): 1209-20, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17416730

RESUMEN

Gibberellic acid (GA) promotes seed germination, elongation growth, and flowering time in plants. GA responses are repressed by DELLA proteins, which contain an N-terminal DELLA domain essential for GA-dependent proteasomal degradation of DELLA repressors. Mutations of or within the DELLA domain of DELLA repressors have been described for species including Arabidopsis thaliana, wheat (Triticum aestivum), maize (Zea mays), and barley (Hordeum vulgare), and we show that these mutations confer GA insensitivity when introduced into the Arabidopsis GA INSENSITIVE (GAI) DELLA repressor. We also demonstrate that Arabidopsis mutants lacking the three GA INSENSITIVE DWARF1 (GID1) GA receptor genes are GA insensitive with respect to GA-promoted growth responses, GA-promoted DELLA repressor degradation, and GA-regulated gene expression. Our genetic interaction studies indicate that GAI and its close homolog REPRESSOR OF ga1-3 are the major growth repressors in a GA receptor mutant background. We further demonstrate that the GA insensitivity of the GAI DELLA domain mutants is explained in all cases by the inability of the mutant proteins to interact with the GID1A GA receptor. Since we found that the GAI DELLA domain alone can mediate GA-dependent GID1A interactions, we propose that the DELLA domain functions as a receiver domain for activated GA receptors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Sitios de Unión , ADN Bacteriano/genética , Flores/metabolismo , Genotipo , Germinación , Datos de Secuencia Molecular , Mutación , Zea mays/metabolismo , Zea mays/fisiología
4.
Plant Cell ; 19(4): 1163-78, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17435085

RESUMEN

E3 ubiquitin ligases (E3s) target proteins for degradation by the 26S proteasome. In SKP1/CDC53/F-box protein-type E3s, substrate specificity is conferred by the interchangeable F-box protein subunit. The vast majority of the 694 F-box proteins encoded by the Arabidopsis thaliana genome remain to be understood. We characterize the VIER F-BOX PROTEINE (VFB; German for FOUR F-BOX PROTEINS) genes from Arabidopsis that belong to subfamily C of the Arabidopsis F-box protein superfamily. This subfamily also includes the F-box proteins TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) proteins and EIN3 BINDING F-BOX proteins, which regulate auxin and ethylene responses, respectively. We show that loss of VFB function causes delayed plant growth and reduced lateral root formation. We find that the expression of a number of auxin-responsive genes and the activity of DR5:beta-glucuronidase, a reporter for auxin response, are reduced in the vfb mutants. This finding correlates with an increase in the abundance of an AUXIN/INDOLE-3-ACETIC ACID repressor. However, we also find that auxin responses are not affected in the vfb mutants and that a representative VFB family member, VFB2, cannot functionally complement the tir1-1 mutant. We therefore exclude the possibility that VFBs are functional orthologs of TIR1/AFB proteins.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas F-Box/genética , Secuencia de Aminoácidos , Arabidopsis/clasificación , Secuencia de Bases , Codón , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutagénesis , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Homología de Secuencia de Aminoácido
5.
Gene ; 392(1-2): 106-16, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17240087

RESUMEN

In eukaryotes, E3 ubiquitin ligases (E3s) mediate the ubiquitylation of proteins that are destined for degradation by the ubiquitin-proteasome system. In SKP1/CDC53/F-box protein (SCF)-type E3 complexes, the interchangeable F-box protein confers specificity to the E3 ligase through direct physical interactions with the degradation substrate. The vast majority of the approximately 700 F-box proteins from the plant model organism Arabidopsis thaliana remain to be characterized. Here, we investigate the previously uncharacterized and evolutionarily conserved Arabidopsis F-box protein 7 (AtFBP7), which is encoded by a unique gene in Arabidopsis (At1g21760). Several apparent fbp7 loss-of-function alleles do not have an obvious phenotype. AtFBP7 is ubiquitously expressed and its expression is induced after cold and heat stress. When following up on a reported co-purification of the eukaryotic elongation factor-2 (eEF-2) with YLR097c, the apparent budding yeast orthologue of AtFBP7, we discovered a general defect in protein biosynthesis after cold and heat stress in fbp7 mutants. Thus, our findings suggest that AtFBP7 is required for protein synthesis during temperature stress.


Asunto(s)
Arabidopsis/genética , Proteínas F-Box/genética , Proteínas F-Box/fisiología , Biosíntesis de Proteínas , Temperatura , Adaptación Biológica/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Secuencia Conservada , Evolución Molecular , Proteínas F-Box/metabolismo , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...