Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 26(4): 106295, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36950121

RESUMEN

Sea urchins can detect light and move in relation to luminous stimuli despite lacking eyes. They presumably detect light through photoreceptor cells distributed on their body surface. However, there is currently no mechanistic explanation of how these animals can process light to detect visual stimuli and produce oriented movement. Here, we present a model of decentralized vision in echinoderms that includes all known processing stages, from photoreceptor cells to radial nerve neurons to neurons contained in the oral nerve ring encircling the mouth of the animals. In the model, light stimuli captured by photoreceptor cells produce neural activity in the radial nerve neurons. In turn, neural activity in the radial nerves is integrated in the oral nerve ring to produce a profile of neural activity reaching spatially across several ambulacra. This neural activity is readout to produce a model of movement. The model captures previously published data on the behavior of sea urchin Diadema africanum probed with a variety of physical stimuli. The specific pattern of neural connections used in the model makes testable predictions on the properties of single neurons and aggregate neural behavior in Diadema africanum and other echinoderms, offering a potential understanding of the mechanism of visual orientation in these animals.

2.
Vision Res ; 196: 108046, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35381423

RESUMEN

If the primary function of avian-dispersed fruit coloration were the maximization of detectability, then the commonest avian-dispersed fruit colors should be the ones most detectable to birds. We tested this prediction by photographing 63 fruit species primarily dispersed by birds, in situ in Sweden and Australia, with a multispectral camera closely mimicking the predominant spectral sensitivities of birds, including both UVS and VS (peak ultraviolet sensitivity ∼370 and 409 nm respectively) visual systems. Fruits were classified into nine distinct color categories based on different patterns of cone excitations, and were named by combining human color names with fruits' UV reflective properties. For example, a bluish-UV fruit would be a fruit that excited the avian UV cone the most, but that also strongly excited the blue cone. Color and achromatic contrasts were calculated between each fruit color and common background objects, and compared to the relative abundance of the different fruit colors. Although red was highly detectable and the commonest color, the second and third commonest colors, purplish-UV and bluish-UV (often termed "black" by humans), were the least detectable. Although these latter two colors were more detectable to UVS than to VS birds, they were the least detectable to both visual systems. Rare fruit colors, such as UVish-purple, pink, and orange, were highly detectable to both visual systems. The lack of correlation between fruit color abundance and detectability suggests that the maximization of detectability has not been the primary driving force behind the evolution of fruit color.


Asunto(s)
Aves , Frutas , Animales , Color , Humanos , Células Fotorreceptoras Retinianas Conos
3.
Curr Biol ; 32(7): R300-R303, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35413251

RESUMEN

In the vertebrate eye, photoreceptors are covered beneath a thick sheet of neural retina and face away from the light. This seemingly awkward arrangement has led to the popular notion that our retinas are upside down, implying a deep design flaw. Baden and Nilsson argue that, from an evolutionary perspective, an inverted design actually offers many notable benefits that might have never been exploited if things had started off the other way round.


Asunto(s)
Células Fotorreceptoras , Retina , Cara
4.
J Exp Biol ; 225(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35166335

RESUMEN

The skate Leucoraja erinacea has an elaborately shaped pupil, whose characteristics and functions have received little attention. The goal of our study was to investigate the pupil response in relation to natural ambient light intensities. First, we took a recently developed sensory-ecological approach, which gave us a tool for creating a controlled light environment for behavioural work: during a field survey, we collected a series of calibrated natural habitat images from the perspective of the skates' eyes. From these images, we derived a vertical illumination profile using custom-written software for quantification of the environmental light field (ELF). After collecting and analysing these natural light field data, we created an illumination set-up in the laboratory, which closely simulated the natural vertical light gradient that skates experience in the wild and tested the light responsiveness - in particular the extent of dilation - of the skate pupil to controlled changes in this simulated light field. Additionally, we measured pupillary dilation and constriction speeds. Our results confirm that the skate pupil changes from nearly circular under low light to a series of small triangular apertures under bright light. A linear regression analysis showed a trend towards smaller skates having a smaller dynamic range of pupil area (dilation versus constriction ratio around 4-fold), and larger skates showing larger ranges (around 10- to 20-fold). Dilation took longer than constriction (between 30 and 45 min for dilation; less than 20 min for constriction), and there was considerable individual variation in dilation/constriction time. We discuss our findings in terms of the visual ecology of L. erinacea and consider the importance of accurately simulating natural light fields in the laboratory.


Asunto(s)
Pupila , Rajidae , Animales , Constricción , Luz , Estimulación Luminosa , Pupila/fisiología , Rajidae/fisiología
5.
Front Neuroanat ; 16: 789375, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35221931

RESUMEN

Just like other complex biological features, image vision (multi-pixel light sensing) did not evolve suddenly. Animal visual systems have a long prehistory of non-imaging light sensitivity. The first spatial vision was likely very crude with only few pixels, and evolved to improve orientation behaviors previously supported by single-channel directional photoreception. The origin of image vision was simply a switch from single to multiple spatial channels, which improved the behaviors for finding a suitable habitat and position itself within it. Orientation based on spatial vision obviously involves active guidance of behaviors but, by necessity, also assessment of habitat suitability and environmental conditions. These conditions are crucial for deciding when to forage, reproduce, seek shelter, rest, etc. When spatial resolution became good enough to see other animals and interact with them, a whole range of new visual roles emerged: pursuit, escape, communication and other interactions. All these new visual roles require entirely new types of visual processing. Objects needed to be separated from the background, identified and classified to make the correct choice of interaction. Object detection and identification can be used actively to guide behaviors but of course also to assess the over-all situation. Visual roles can thus be classified as either ancient non-object-based tasks, or object vision. Each of these two categories can also be further divided into active visual tasks and visual assessment tasks. This generates four major categories of vision into which I propose that all visual roles can be categorized.

6.
Naturwissenschaften ; 109(1): 6, 2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34894274

RESUMEN

Examining the role of color in mate choice without testing what colors the study animal is capable of seeing can lead to ill-posed hypotheses and erroneous conclusions. Here, we test the seemingly reasonable assumption that the sexually dimorphic red coloration of the male jumping spider Saitis barbipes is distinguishable, by females, from adjacent black color patches. Using microspectrophotometry, we find clear evidence for photoreceptor classes with maximal sensitivity in the UV (359 nm) and green (526 nm), inconclusive evidence for a photoreceptor maximally sensitive in the blue (451 nm), and no evidence for a red photoreceptor. No colored filters within the lens or retina could be found to shift green sensitivity to red. To quantify and visualize whether females may nevertheless be capable of discriminating red from black color patches, we take multispectral images of males and calculate photoreceptor excitations and color contrasts between color patches. Red patches would be, at best, barely discriminable from black, and not discriminable from a low-luminance green. Some color patches that appear achromatic to human eyes, such as beige and white, strongly absorb UV wavelengths and would appear as brighter "spider-greens" to S. barbipes than the red color patches. Unexpectedly, we discover an iridescent UV patch that contrasts strongly with the UV-absorbing surfaces dominating the rest of the spider. We propose that red and black coloration may serve identical purposes in sexual signaling, functioning to generate strong achromatic contrast with the visual background. The potential functional significance of red coloration outside of sexual signaling is discussed.


Asunto(s)
Arañas , Animales , Femenino , Humanos , Masculino
7.
Artículo en Inglés | MEDLINE | ID: mdl-34709430

RESUMEN

Combining studies of animal visual systems with exact imaging of their visual environment can get us a step closer to understand how animals see their "Umwelt". Here, we have combined both methods to better understand how males of the speckled wood butterfly, Pararge aegeria, see the surroundings of their perches. These males are well known to sit and wait for a chance to mate with a passing females, in sunspot territories in European forests. We provide a detailed description of the males' body and head posture, viewing direction, visual field and spatial resolution, as well as the visual environment. Pararge aegeria has sexually dimorphic eyes, the smallest interommatidial angles of males are around 1°, those of females 1.5°. Perching males face the antisolar direction with their retinal region of the highest resolution pointing at an angle of about 45° above the horizon; thus, looking at a rather even and dark background in front of which they likely have the best chance to detect a sunlit female passing through the sunspot.


Asunto(s)
Mariposas Diurnas/fisiología , Fenómenos Ecológicos y Ambientales/fisiología , Orientación/fisiología , Territorialidad , Campos Visuales/fisiología , Animales , Ojo , Femenino , Lepidópteros , Masculino , Suecia , Visión Ocular/fisiología
8.
Curr Biol ; 31(17): 3935-3942.e3, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34329592

RESUMEN

Increasing global light pollution1,2 threatens the night-time darkness to which most animals are adapted. Light pollution can have detrimental effects on behavior,3-5 including by disrupting the journeys of migratory birds,5,6 sand hoppers,7-9 and moths.10 This is particularly concerning, since many night-active species rely on compass information in the sky, including the moon,11,12 the skylight polarization pattern,13,14 and the stars,15 to hold their course. Even animals not directly exposed to streetlights and illuminated buildings may still experience indirect light pollution in the form of skyglow,3,4 which can extend far beyond urban areas.1,2 While some recent research used simulated light pollution to estimate how skyglow may affect orientation behavior,7-9 the consequences of authentic light pollution for celestial orientation have so far been neglected. Here, we present the results of behavioral experiments at light-polluted and dark-sky sites paired with photographic measurements of each environment. We find that light pollution obscures natural celestial cues and induces dramatic changes in dung beetle orientation behavior, forcing them to rely on bright earthbound beacons in place of their celestial compass. This change in behavior results in attraction toward artificial lights, thereby increasing inter-individual competition and reducing dispersal efficiency. For the many other species of insect, bird, and mammal that rely on the night sky for orientation and migration, these effects could dramatically hinder their vital night-time journeys.


Asunto(s)
Escarabajos , Animales , Aves , Señales (Psicología) , Luz , Contaminación Lumínica , Mamíferos , Luna
9.
Vision Res ; 183: 16-29, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33639304

RESUMEN

To expand our understanding of what tasks are particularly helped by UV vision and may justify the costs of focusing high-energy light onto the retina, we used an avian-vision multispectral camera to image diverse vegetated habitats in search of UV contrasts that differ markedly from visible-light contrasts. One UV contrast that stood out as very different from visible-light contrasts was that of nutrient-dense non-signaling plant foods (such as young leaves and immature fruits) against their natural backgrounds. From our images, we calculated color contrasts between 62+ species of such foods and mature foliage for the two predominant color vision systems of birds, UVS and VS. We also computationally generated images of what a generalized tetrachromat, unfiltered by oil droplets, would see, by developing a new methodology that uses constrained linear least squares to solve for optimal weighted combinations of avian camera filters to mimic new spectral sensitivities. In all visual systems, we found that nutrient-dense non-signaling plant foods presented a lower, often negative figure-ground contrast in the UV channels, and a higher, often positive figure-ground contrast in the visible channels. Although a zero contrast may sound unhelpful, it can actually enhance color contrast when compared in a color opponent system to other channels with nonzero contrasts. Here, low or negative UV contrasts markedly enhanced color contrasts. We propose that plants may struggle to evolve better UV crypsis since UV reflectance from vegetation is largely specular and thus highly dependent on object orientation, shape, and texture.


Asunto(s)
Visión de Colores , Rayos Ultravioleta , Animales , Aves , Humanos , Nutrientes , Retina
10.
J Exp Biol ; 222(Pt 23)2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31727758

RESUMEN

Fan worms (Annelida: Sabellidae) possess compound eyes and other photoreceptors on their radiolar feeding tentacles. These eyes putatively serve as an alarm system that alerts the worm to encroaching threats, eliciting a rapid defensive retraction into their protective tube. The structure and independent evolutionary derivation of these radiolar eyes make them a fascinating target for exploring the emergence of new sensory systems and visually guided behaviours. However, little is known about their physiology and how this impacts their function. Here, we present electroretinogram recordings from the radiolar eyes of the fan worm Acromegalomma vesiculosum We examine their spectral sensitivity along with their dynamic range and temporal resolution. Our results show that they possess one class of photoreceptors with a single visual pigment peaking in the blue-green part of the spectrum around 510 nm, which matches the dominant wavelengths in their shallow coastal habitats. We found the eyes to have a rather high temporal resolution with a critical flicker fusion frequency around 35 Hz. The high temporal resolution of this response is ideally suited for detecting rapidly moving predators but also necessitates downstream signal processing to filter out caustic wave flicker. This study provides a fundamental understanding of how these eyes function. Furthermore, these findings emphasise a set of dynamic physiological principles that are well suited for governing a multi-eyed startle response in coastal aquatic habitats.


Asunto(s)
Células Fotorreceptoras de Invertebrados/fisiología , Poliquetos/fisiología , Animales , Electrorretinografía , Ojo/fisiopatología
11.
BMC Biol ; 17(1): 67, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31416484

RESUMEN

BACKGROUND: Arthropod eyes have diversified during evolution to serve multiple needs, such as finding mates, hunting prey and navigating in complex surroundings under varying light conditions. This diversity is reflected in the optical apparatus, photoreceptors and neural circuits that underpin vision. Yet our ability to genetically manipulate the visual system to investigate its function is largely limited to a single species, the fruit fly Drosophila melanogaster. Here, we describe the visual system of Parhyale hawaiensis, an amphipod crustacean for which we have established tailored genetic tools. RESULTS: Adult Parhyale have apposition-type compound eyes made up of ~ 50 ommatidia. Each ommatidium contains four photoreceptor cells with large rhabdomeres (R1-4), expected to be sensitive to the polarisation of light, and one photoreceptor cell with a smaller rhabdomere (R5). The two types of photoreceptors express different opsins, belonging to families with distinct wavelength sensitivities. Using the cis-regulatory regions of opsin genes, we established transgenic reporters expressed in each photoreceptor cell type. Based on these reporters, we show that R1-4 and R5 photoreceptors extend axons to the first optic lobe neuropil, revealing striking differences compared with the photoreceptor projections found in related crustaceans and insects. Investigating visual function, we show that Parhyale have a positive phototactic response and are capable of adapting their eyes to different levels of light intensity. CONCLUSIONS: We propose that the visual system of Parhyale serves low-resolution visual tasks, such as orientation and navigation, based on broad gradients of light intensity and polarisation. Optic lobe structure and photoreceptor projections point to significant divergence from the typical organisation found in other malacostracan crustaceans and insects, which could be associated with a shift to low-resolution vision. Our study provides the foundation for research in the visual system of this genetically tractable species.


Asunto(s)
Anfípodos/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Visión Ocular/fisiología , Percepción Visual/fisiología , Animales , Fototaxis/fisiología
12.
Nature ; 573(7772): 122-125, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31413368

RESUMEN

Fossilized eyes permit inferences of the visual capacity of extinct arthropods1-3. However, structural and/or chemical modifications as a result of taphonomic and diagenetic processes can alter the original features, thereby necessitating comparisons with modern species. Here we report the detailed molecular composition and microanatomy of the eyes of 54-million-year-old crane-flies, which together provide a proxy for the interpretation of optical systems in some other ancient arthropods. These well-preserved visual organs comprise calcified corneal lenses that are separated by intervening spaces containing eumelanin pigment. We also show that eumelanin is present in the facet walls of living crane-flies, in which it forms the outermost ommatidial pigment shield in compound eyes incorporating a chitinous cornea. To our knowledge, this is the first record of melanic screening pigments in arthropods, and reveals a fossilization mode in insect eyes that involves a decay-resistant biochrome coupled with early diagenetic mineralization of the ommatidial lenses. The demonstrable secondary calcification of lens cuticle that was initially chitinous has implications for the proposed calcitic corneas of trilobites, which we posit are artefacts of preservation rather than a product of in vivo biomineralization4-7. Although trilobite eyes might have been partly mineralized for mechanical strength, a (more likely) organic composition would have enhanced function via gradient-index optics and increased control of lens shape.


Asunto(s)
Artrópodos/anatomía & histología , Artrópodos/química , Dípteros/anatomía & histología , Dípteros/química , Fósiles , Pigmentos Biológicos/análisis , Pigmentos Biológicos/química , Animales , Biomarcadores/análisis , Biomarcadores/química , Femenino , Pinzones , Masculino , Melaninas/análisis , Melaninas/química , Óptica y Fotónica
13.
Nat Commun ; 10(1): 238, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30670700

RESUMEN

UV vision is prevalent, but we know little about its utility in common general tasks, as in resolving habitat structure. Here we visualize vegetated habitats using a multispectral camera with channels mimicking bird photoreceptor sensitivities across the UV-visible spectrum. We find that the contrast between upper and lower leaf surfaces is higher in a UV channel than in any visible channel, and that this makes leaf position and orientation stand out clearly. This was unexpected since both leaf surfaces reflect similarly small proportions (1-2%) of incident UV light. The strong UV-contrast can be explained by downwelling light being brighter than upwelling, and leaves transmitting < 0.06% of incident UV light. We also find that mirror-like specular reflections of the sky and overlying canopy, from the waxy leaf cuticle, often dwarf diffuse reflections. Specular reflections shift leaf color, such that maximum leaf-contrast is seen at short UV wavelengths under open canopies, and at long UV wavelengths under closed canopies.


Asunto(s)
Aves/fisiología , Hojas de la Planta/fisiología , Rayos Ultravioleta , Percepción Visual , Animales , Modelos Biológicos , Luz Solar
14.
J Exp Biol ; 222(Pt 2)2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30530838

RESUMEN

For polarized light to inform behaviour, the typical range of degrees of polarization observable in the animal's natural environment must be above the threshold for detection and interpretation. Here, we present the first investigation of the degree of linear polarization threshold for orientation behaviour in a nocturnal species, with specific reference to the range of degrees of polarization measured in the night sky. An effect of lunar phase on the degree of polarization of skylight was found, with smaller illuminated fractions of the moon's surface corresponding to lower degrees of polarization in the night sky. We found that the South African dung beetle Escarabaeus satyrus can orient to polarized light for a range of degrees of polarization similar to that observed in diurnal insects, reaching a lower threshold between 0.04 and 0.32, possibly as low as 0.11. For degrees of polarization lower than 0.23, as measured on a crescent moon night, orientation performance was considerably weaker than that observed for completely linearly polarized stimuli, but was nonetheless stronger than in the absence of polarized light.


Asunto(s)
Escarabajos/fisiología , Luz , Percepción Visual , Animales , Luna , Orientación Espacial , Sudáfrica
16.
Curr Biol ; 28(13): 2018-2032.e5, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29937350

RESUMEN

Animal eyes have evolved to process behaviorally important visual information, but how retinas deal with statistical asymmetries in visual space remains poorly understood. Using hyperspectral imaging in the field, in vivo 2-photon imaging of retinal neurons, and anatomy, here we show that larval zebrafish use a highly anisotropic retina to asymmetrically survey their natural visual world. First, different neurons dominate different parts of the eye and are linked to a systematic shift in inner retinal function: above the animal, there is little color in nature, and retinal circuits are largely achromatic. Conversely, the lower visual field and horizon are color rich and are predominately surveyed by chromatic and color-opponent circuits that are spectrally matched to the dominant chromatic axes in nature. Second, in the horizontal and lower visual field, bipolar cell terminals encoding achromatic and color-opponent visual features are systematically arranged into distinct layers of the inner retina. Third, above the frontal horizon, a high-gain UV system piggybacks onto retinal circuits, likely to support prey capture.


Asunto(s)
Percepción de Color/fisiología , Visión de Colores/fisiología , Pez Cebra/fisiología , Animales , Sensibilidad de Contraste , Femenino , Masculino , Retina/fisiología
17.
J Exp Biol ; 221(Pt 14)2018 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-29739834

RESUMEN

Many sea urchins can detect light on their body surface and some species are reported to possess image-resolving vision. Here, we measure the spatial resolution of vision in the long-spined sea urchin Diadema africanum, using two different visual responses: a taxis towards dark objects and an alarm response of spine-pointing towards looming stimuli. For the taxis response we used visual stimuli, which were isoluminant to the background, to discriminate spatial vision from phototaxis. Individual animals were placed in the centre of a cylindrical arena under bright down-welling light, with stimuli of varying angular width placed on the arena wall at alternating directions from the centre. We tracked the direction of movement of individual animals in relation to the stimuli to determine whether the animals oriented towards the stimulus. We found that D. africanum responds by taxis towards isoluminant stimuli with a spatial resolution in the range of 29-69 deg. This corresponds to a theoretical acceptance angle of 38-89 deg, assuming a contrast threshold of 10%. The visual acuity of the alarm response of D. africanum was tested by exposing animals to different sized dark looming and appearing stimuli on a monitor. We found that D. africanum displays a spine-pointing response to appearing black circles of 13-25 deg angular width, corresponding to an acceptance angle of 60-116 deg, assuming the same contrast threshold as above.


Asunto(s)
Fototaxis/fisiología , Erizos de Mar/fisiología , Agudeza Visual/fisiología , Animales , Movimiento
18.
J Exp Biol ; 221(Pt 11)2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29626113

RESUMEN

Onychophorans, also known as velvet worms, possess a pair of simple lateral eyes, and are a key lineage with regard to the evolution of vision. They resemble ancient Cambrian forms, and are closely related to arthropods, which boast an unrivalled diversity of eye designs. Nonetheless, the visual capabilities of onychophorans have not been well explored. Here, we assessed the spatial resolution of the onychophoran Euperipatoides rowelli using behavioural experiments, three-dimensional reconstruction, anatomical and optical examinations, and modelling. Exploiting their spontaneous attraction towards dark objects, we found that E. rowelli can resolve stimuli that have the same average luminance as the background. Depending on the assumed contrast sensitivity of the animals, we estimate the spatial resolution to be in the range 15-40 deg. This results from an arrangement where the cornea and lens project the image largely behind the retina. The peculiar ellipsoid shape of the eye in combination with the asymmetric position and tilted orientation of the lens may improve spatial resolution in the forward direction. Nonetheless, the unordered network of interdigitating photoreceptors, which fills the whole eye chamber, precludes high-acuity vision. Our findings suggest that adult specimens of E. rowelli cannot spot or visually identify prey or conspecifics beyond a few centimetres from the eye, but the coarse spatial resolution that the animals exhibited in our experiments is likely to be sufficient to find shelter and suitable microhabitats from further away. To our knowledge, this is the first evidence of resolving vision in an onychophoran.


Asunto(s)
Invertebrados/fisiología , Visión Ocular/fisiología , Animales , Ojo/patología
19.
Proc Biol Sci ; 285(1871)2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29367394

RESUMEN

Throughout history, the stars have provided humans with ever more information about our world, enabling increasingly accurate systems of navigation in addition to fuelling some of the greatest scientific controversies. What information animals have evolved to extract from a starry sky and how they do so, is a topic of study that combines the practical and theoretical challenges faced by both astronomers and field biologists. While a number of animal species have been demonstrated to use the stars as a source of directional information, the strategies that these animals use to convert this complex and variable pattern of dim-light points into a reliable 'stellar orientation' cue have been more difficult to ascertain. In this review, we assess the stars as a visual stimulus that conveys directional information, and compare the bodies of evidence available for the different stellar orientation strategies proposed to date. In this context, we also introduce new technologies that may aid in the study of stellar orientation, and suggest how field experiments may be used to characterize the mechanisms underlying stellar orientation.


Asunto(s)
Migración Animal , Navegación Espacial , Animales
20.
Biol Bull ; 233(1): 39-57, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-29182501

RESUMEN

Fan worms, represented by sabellid and serpulid polychaetes, have an astonishing array of unusual eyes and photoreceptors located on their eponymous feeding appendages. Here we organize the previous descriptions of these eyes in serpulids and report new anatomical, molecular, and physiological data regarding their structure, function, and evolution and the likely identity of their phototransduction machinery. We report that, as in sabellids, serpulids display a broad diversity of radiolar eye arrangements and ocellar structures. Furthermore, the visual pigment expressed in the eyes of Spirobranchus corniculatus, a species of the charismatic Christmas tree worms, absorbs light maximally at 464 nm in wavelength. This visual pigment closely matches the spectrum of downwelling irradiance in shallow coral reef habitats and lends support to the hypothesis that these radiolar photoreceptors function as a silhouette-detecting "burglar alarm" that triggers a rapid withdrawal response when the worm is threatened by potential predators. Finally, we report on the transcriptomic sequencing results for the radiolar eyes of S. corniculatus, which express invertebrate c-type opsins in their ciliary radiolar photoreceptors, closely related to the opsin found in the radiolar eyes of the sabellid Acromegalomma interruptum. We explore the potential for a shared evolutionary lineage between the radiolar photoreceptors of serpulids and sabellids and consider these unique innovations in the broader context of metazoan eye evolution.


Asunto(s)
Anélidos/fisiología , Fototransducción/fisiología , Animales , Anélidos/anatomía & histología , Luz , Opsinas/genética , Células Fotorreceptoras de Invertebrados/fisiología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...