Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Clin Transl Immunology ; 13(4): e1503, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623540

RESUMEN

Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of a class of highly pathogenic coronaviruses. The large family of coronaviruses, however, also includes members that cause only mild symptoms, like human coronavirus-229E (HCoV-229E) or OC43 (HCoV-OC43). Unravelling how molecular (and cellular) pathophysiology differs between highly and low pathogenic coronaviruses is important for the development of therapeutic strategies. Methods: Here, we analysed the transcriptome of primary human bronchial epithelial cells (PBEC), differentiated at the air-liquid interface (ALI) after infection with SARS-CoV-2, SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV and HCoV-229E using bulk RNA sequencing. Results: ALI-PBEC were efficiently infected by all viruses, and SARS-CoV, MERS-CoV and HCoV-229E infection resulted in a largely similar transcriptional response. The response to SARS-CoV-2 infection differed markedly as it uniquely lacked the increase in expression of immediate early genes, including FOS, FOSB and NR4A1 that was observed with all other coronaviruses. This finding was further confirmed in publicly available experimental and clinical datasets. Interfering with NR4A1 signalling in Calu-3 lung epithelial cells resulted in a 100-fold reduction in extracellular RNA copies of SARS-CoV-2 and MERS-CoV, suggesting an involvement in virus replication. Furthermore, a lack in induction of interferon-related gene expression characterised the main difference between the highly pathogenic coronaviruses and low pathogenic viruses HCoV-229E and HCoV-OC43. Conclusion: Our results demonstrate a previously unknown suppression of a host response gene set by SARS-CoV-2 and confirm a difference in interferon-related gene expression between highly pathogenic and low pathogenic coronaviruses.

3.
Front Cell Infect Microbiol ; 13: 1253037, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822359

RESUMEN

Lung epithelial cells represent the first line of host defence against foreign inhaled components, including respiratory pathogens. Their responses to these exposures may direct subsequent immune activation to these pathogens. The epithelial response to mycobacterial infections is not well characterized and may provide clues to why some mycobacterial infections are cleared, while others are persistent and pathogenic. We have utilized an air-liquid interface model of human primary bronchial epithelial cells (ALI-PBEC) to investigate the epithelial response to infection with a variety of mycobacteria: Mycobacterium tuberculosis (Mtb), M. bovis (BCG), M. avium, and M. smegmatis. Airway epithelial cells were found to be infected by all four species, albeit at low frequencies. The proportion of infected epithelial cells was lowest for Mtb and highest for M. avium. Differential gene expression analysis revealed a common epithelial host response to mycobacteria, including upregulation of BIRC3, S100A8 and DEFB4, and downregulation of BPIFB1 at 48 h post infection. Apical secretions contained predominantly pro-inflammatory cytokines, while basal secretions contained tissue growth factors and chemokines. Finally, we show that neutrophils were attracted to both apical and basal secretions of infected ALI-PBEC. Neutrophils were attracted in high numbers to apical secretions from PBEC infected with all mycobacteria, with the exception of secretions from M. avium-infected ALI-PBEC. Taken together, our results show that airway epithelial cells are differentially infected by mycobacteria, and react rapidly by upregulation of antimicrobials, and increased secretion of inflammatory cytokines and chemokines which directly attract neutrophils. Thus, the airway epithelium may be an important immunological component in controlling and regulating mycobacterial infections.


Asunto(s)
Infecciones por Mycobacterium , Mycobacterium tuberculosis , Humanos , Citocinas/metabolismo , Células Epiteliales/metabolismo , Quimiocinas/metabolismo
5.
Respir Res ; 24(1): 207, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612597

RESUMEN

BACKGROUND: Acute exacerbations of chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD), are frequently associated with rhinovirus (RV) infections. Despite these associations, the pathogenesis of virus-induced exacerbations is incompletely understood. We aimed to investigate effects of cigarette smoke (CS), a primary risk factor for COPD, on RV infection in airway epithelium and identify novel mechanisms related to these effects. METHODS: Primary bronchial epithelial cells (PBEC) from COPD patients and controls were differentiated by culture at the air-liquid interface (ALI) and exposed to CS and RV-A16. Bulk RNA sequencing was performed using samples collected at 6 and 24 h post infection (hpi), and viral load, mediator and L-lactate levels were measured at 6, 24 and 48hpi. To further delineate the effect of CS on RV-A16 infection, we performed growth differentiation factor 15 (GDF15) knockdown, L-lactate and interferon pre-treatment in ALI-PBEC. We performed deconvolution analysis to predict changes in the cell composition of ALI-PBEC after the various exposures. Finally, we compared transcriptional responses of ALI-PBEC to those in nasal epithelium after human RV-A16 challenge. RESULTS: CS exposure impaired antiviral responses at 6hpi and increased viral replication at 24 and 48hpi in ALI-PBEC. At 24hpi, CS exposure enhanced expression of RV-A16-induced epithelial interferons, inflammation-related genes and CXCL8. CS exposure increased expression of oxidative stress-related genes, of GDF15, and decreased mitochondrial membrane potential. GDF15 knockdown experiments suggested involvement of this pathway in the CS-induced increase in viral replication. Expression of glycolysis-related genes and L-lactate production were increased by CS exposure, and was demonstrated to contribute to higher viral replication. No major differences were demonstrated between COPD and non-COPD-derived cultures. However, cellular deconvolution analysis predicted higher secretory cells in COPD-derived cultures at baseline. CONCLUSION: Altogether, our findings demonstrate that CS exposure leads to higher viral infection in human bronchial epithelium by altering not only interferon responses, but likely also through a switch to glycolysis, and via GDF15-related pathways.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Virosis , Humanos , Interferones , Factor 15 de Diferenciación de Crecimiento , Fumar Cigarrillos/efectos adversos , Lactatos
6.
Mater Today Bio ; 21: 100713, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37455819

RESUMEN

Human lung function is intricately linked to blood flow and breathing cycles, but it remains unknown how these dynamic cues shape human airway epithelial biology. Here we report a state-of-the-art protocol for studying the effects of dynamic medium and airflow as well as stretch on human primary airway epithelial cell differentiation and maturation, including mucociliary clearance, using an organ-on-chip device. Perfused epithelial cell cultures displayed accelerated maturation and polarization of mucociliary clearance, and changes in specific cell-types when compared to traditional (static) culture methods. Additional application of airflow and stretch to the airway chip resulted in an increase in polarization of mucociliary clearance towards the applied flow, reduced baseline secretion of interleukin-8 and other inflammatory proteins, and reduced gene expression of matrix metalloproteinase (MMP) 9, fibronectin, and other extracellular matrix factors. These results indicate that breathing-like mechanical stimuli are important modulators of airway epithelial cell differentiation and maturation and that their fine-tuned application could generate models of specific epithelial pathologies, including mucociliary (dys)function.

7.
J Vis Exp ; (195)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37306425

RESUMEN

The airway epithelial cell layer forms the first barrier between lung tissue and the outside environment and is thereby constantly exposed to inhaled substances, including infectious agents and air pollutants. The airway epithelial layer plays a central role in a large variety of acute and chronic lung diseases, and various treatments targeting this epithelium are administered by inhalation. Understanding the role of epithelium in pathogenesis and how it can be targeted for therapy requires robust and representative models. In vitro epithelial culture models are increasingly being used and offer the advantage of performing experiments in a controlled environment, exposing the cells to different kinds of stimuli, toxicants, or infectious agents. The use of primary cells instead of immortalized or tumor cell lines has the advantage that these cells differentiate in culture to a pseudostratified polarized epithelial cell layer with a better representation of the epithelium compared to cell lines. Presented here is a robust protocol, that has been optimized over the past decades, for the isolation and culture of airway epithelial cells from lung tissue. This procedure allows successful isolation, expansion, culture, and mucociliary differentiation of primary bronchial epithelial cells (PBECs) by culturing at the air-liquid interface (ALI) and includes a protocol for biobanking. Furthermore, the characterization of these cultures using cell-specific marker genes is described. These ALI-PBEC cultures can be used for a range of applications, including exposure to whole cigarette smoke or inflammatory mediators, and co-culture/infection with viruses or bacteria. The protocol provided in this manuscript, illustrating the procedure in a step-by-step manner, is expected to provide a basis and/or reference for those interested in implementing or adapting such culture systems in their laboratory.


Asunto(s)
Bancos de Muestras Biológicas , Células Epiteliales , Epitelio , Línea Celular Tumoral , Pulmón
8.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902020

RESUMEN

The SARS-CoV-2 pandemic highlighted the need for broad-spectrum antivirals to increase our preparedness. Patients often require treatment by the time that blocking virus replication is less effective. Therefore, therapy should not only aim to inhibit the virus, but also to suppress pathogenic host responses, e.g., leading to microvascular changes and pulmonary damage. Clinical studies have previously linked SARS-CoV-2 infection to pathogenic intussusceptive angiogenesis in the lungs, involving the upregulation of angiogenic factors such as ANGPTL4. The ß-blocker propranolol is used to suppress aberrant ANGPTL4 expression in the treatment of hemangiomas. Therefore, we investigated the effect of propranolol on SARS-CoV-2 infection and the expression of ANGPTL4. SARS-CoV-2 upregulated ANGPTL4 in endothelial and other cells, which could be suppressed with R-propranolol. The compound also inhibited the replication of SARS-CoV-2 in Vero-E6 cells and reduced the viral load by up to ~2 logs in various cell lines and primary human airway epithelial cultures. R-propranolol was as effective as S-propranolol but lacks the latter's undesired ß-blocker activity. R-propranolol also inhibited SARS-CoV and MERS-CoV. It inhibited a post-entry step of the replication cycle, likely via host factors. The broad-spectrum antiviral effect and suppression of factors involved in pathogenic angiogenesis make R-propranolol an interesting molecule to further explore for the treatment of coronavirus infections.


Asunto(s)
COVID-19 , Animales , Chlorocebus aethiops , Humanos , Propranolol/farmacología , SARS-CoV-2 , Células Vero , Línea Celular , Antivirales/farmacología , Replicación Viral
9.
J Innate Immun ; 15(1): 562-580, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36966527

RESUMEN

The consequences of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can range from asymptomatic to fatal disease. Variations in epithelial susceptibility to SARS-CoV-2 infection depend on the anatomical location from the proximal to distal respiratory tract. However, the cellular biology underlying these variations is not completely understood. Thus, air-liquid interface cultures of well-differentiated primary human tracheal and bronchial epithelial cells were employed to study the impact of epithelial cellular composition and differentiation on SARS-CoV-2 infection by transcriptional (RNA sequencing) and immunofluorescent analyses. Changes of cellular composition were investigated by varying time of differentiation or by using specific compounds. We found that SARS-CoV-2 primarily infected not only ciliated cells but also goblet cells and transient secretory cells. Viral replication was impacted by differences in cellular composition, which depended on culturing time and anatomical origin. A higher percentage of ciliated cells correlated with a higher viral load. However, DAPT treatment, which increased the number of ciliated cells and reduced goblet cells, decreased viral load, indicating the contribution of goblet cells to infection. Cell entry factors, especially cathepsin L and transmembrane protease serine 2, were also affected by differentiation time. In conclusion, our study demonstrates that viral replication is affected by changes in cellular composition, especially in cells related to the mucociliary system. This could explain in part the variable susceptibility to SARS-CoV-2 infection between individuals and between anatomical locations in the respiratory tract.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Sistema Respiratorio , Células Epiteliales , Biología
10.
Antioxidants (Basel) ; 11(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36290742

RESUMEN

Cigarette smoke (CS) induces oxidative stress and chronic inflammation in airway epithelium. It is a major risk factor for respiratory diseases, characterized by epithelial injury. The impact of CS on airway epithelial repair, which involves epithelial-mesenchymal transition (EMT) and the Notch-1 pathway, is incompletely understood. In this study, we used primary bronchial epithelial cells (PBECs) to evaluate the effect of CS on epithelial repair and these mechanisms. The effect of CS and/or TGF-beta1 on wound repair, various EMT and Notch-1 pathway markers and epithelial cell markers (TP63, SCGB1A) was assessed in PBECs cultured submerged, at the air-liquid interface (ALI) alone and in co-culture with fibroblasts. TGF-beta1 increased epithelial wound repair, activated EMT (shown by decrease in E-cadherin, and increases in vimentin, SNAIL1/SNAIL2/ZEB1), and increased Notch-1 pathway markers (NOTCH1/JAGGED1/HES1), MMP9, TP63, SCGB1A1. In contrast, CS decreased wound repair and vimentin, NOTCH1/JAGGED1/HES1, MMP9, TP63, SCGB1A1, whereas it activated the initial steps of the EMT (decrease in E-cadherin and increases in SNAIL1/SNAIL2/ZEB1). Using combined exposures, we observed that CS counteracted the effects of TGF-beta1. Furthermore, Notch signaling inhibition decreased wound repair. These data suggest that CS inhibits the physiological epithelial wound repair by interfering with the normal EMT process and the Notch-1 pathway.

11.
Respir Res ; 23(1): 227, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056356

RESUMEN

BACKGROUND: Despite the well-known detrimental effects of cigarette smoke (CS), little is known about the complex gene expression dynamics in the early stages after exposure. This study aims to investigate early transcriptomic responses following CS exposure of airway epithelial cells in culture and compare these to those found in human CS exposure studies. METHODS: Primary bronchial epithelial cells (PBEC) were differentiated at the air-liquid interface (ALI) and exposed to whole CS. Bulk RNA-sequencing was performed at 1 h, 4 h, and 24 h hereafter, followed by differential gene expression analysis. Results were additionally compared to data retrieved from human CS studies. RESULTS: ALI-PBEC gene expression in response to CS was most significantly changed at 4 h after exposure. Early transcriptomic changes (1 h, 4 h post CS exposure) were related to oxidative stress, xenobiotic metabolism, higher expression of immediate early genes and pro-inflammatory pathways (i.e., Nrf2, AP-1, AhR). At 24 h, ferroptosis-associated genes were significantly increased, whereas PRKN, involved in removing dysfunctional mitochondria, was downregulated. Importantly, the transcriptome dynamics of the current study mirrored in-vivo human studies of acute CS exposure, chronic smokers, and inversely mirrored smoking cessation. CONCLUSION: These findings show that early after CS exposure xenobiotic metabolism and pro-inflammatory pathways were activated, followed by activation of the ferroptosis-related cell death pathway. Moreover, significant overlap between these transcriptomic responses in the in-vitro model and human in-vivo studies was found, with an early response of ciliated cells. These results provide validation for the use of ALI-PBEC cultures to study the human lung epithelial response to inhaled toxicants.


Asunto(s)
Fumar Cigarrillos , Xenobióticos , Bronquios/metabolismo , Fumar Cigarrillos/efectos adversos , Fumar Cigarrillos/genética , Células Epiteliales/metabolismo , Humanos , Membrana Mucosa , Nicotiana , Xenobióticos/metabolismo , Xenobióticos/farmacología
12.
Dis Model Mech ; 15(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35344036

RESUMEN

Exposure to cigarette smoke (CS) is the primary risk factor for developing chronic obstructive pulmonary disease. The impact of CS exposure on the molecular mechanisms involved in mitochondrial quality control in airway epithelial cells is incompletely understood. Undifferentiated or differentiated primary bronchial epithelial cells were acutely/chronically exposed to whole CS (WCS) or CS extract (CSE) in submerged or air-liquid interface conditions. Abundance of key regulators controlling mitochondrial biogenesis, mitophagy and mitochondrial dynamics was assessed. Acute exposure to WCS or CSE increased the abundance of components of autophagy and receptor-mediated mitophagy in all models. Although mitochondrial content and dynamics appeared to be unaltered in response to CS, changes in both the molecular control of mitochondrial biogenesis and a shift toward an increased glycolytic metabolism were observed in particular in differentiated cultures. These alterations persisted, at least in part, after chronic exposure to WCS during differentiation and upon subsequent discontinuation of WCS exposure. In conclusion, smoke exposure alters the regulation of mitochondrial metabolism in airway epithelial cells, but observed alterations may differ between various culture models used. This article has an associated First Person interview with the joint first authors of the paper.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Bronquios , Células Epiteliales , Humanos , Mitocondrias , Mitofagia , Enfermedad Pulmonar Obstructiva Crónica/etiología , Nicotiana/efectos adversos
13.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L775-L786, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34378410

RESUMEN

Air-liquid interface (ALI) cultures are frequently used in lung research but require substantial cell numbers that cannot readily be obtained from patients. We explored whether organoid expansion [three-dimensional (3D)] can be used to establish ALI cultures from clinical samples with low epithelial cell numbers. Airway epithelial cells were obtained from tracheal aspirates (TA) from preterm newborns and from bronchoalveolar lavage (BAL) or bronchial tissue (BT) from adults. TA and BAL cells were 3D-expanded, whereas cells from BT were expanded in 3D and 2D. Following expansion, cells were cultured at ALI to induce differentiation. The impact of cell origin and 2D or 3D expansion was assessed with respect to 1) cellular composition, 2) response to cigarette smoke exposure, and 3) effect of Notch inhibition or IL-13 stimulation on cellular differentiation. We established well-differentiated ALI cultures from all samples. Cellular compositions (basal, ciliated, and goblet cells) were comparable. All 3D-expanded cultures showed a similar stress response following cigarette smoke exposure but differed from the 2D-expanded cultures. Higher peak levels of antioxidant genes HMOX1 and NQO1 and a more rapid return to baseline, and a lower unfolded protein response was observed after cigarette smoke exposure in 3D-derived cultures compared to 2D-derived cultures. In addition, TA- and BAL-derived cultures were less sensitive to modulation by DAPT or IL-13 than BT-derived cultures. Organoid-based expansion of clinical samples with low cell numbers, such as TA from preterm newborns is a valid method and tool to establish ALI cultures.


Asunto(s)
Bronquios/citología , Células Epiteliales/citología , Organoides/citología , Mucosa Respiratoria/citología , Humo/efectos adversos , Adulto , Líquido del Lavado Bronquioalveolar/citología , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Células Cultivadas , Hemo-Oxigenasa 1/metabolismo , Humanos , Recién Nacido , Interleucina-13/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Receptores Notch/antagonistas & inhibidores , Productos de Tabaco/efectos adversos , Respuesta de Proteína Desplegada/efectos de los fármacos
14.
Artículo en Inglés | MEDLINE | ID: mdl-32637364

RESUMEN

Human rhinoviruses (HRVs) are associated with acute exacerbations in patients with chronic obstructive pulmonary disease (COPD) and asthma, which are accompanied by mucus hypersecretion. Whereas, various studies have shown that HRVs increase epithelial mucin production and thus may directly contribute to mucus hypersecretion. The effects of drugs used in the treatment of COPD and asthma on HRV-induced mucin production in epithelial cell cultures have not been studied. In the present study, we assessed effects of HRVs on mucin production and secretion in well-differentiated primary human bronchial epithelial cells (PBEC) and studied the effect of the inhaled corticosteroid fluticasone propionate and the long-acting muscarinic antagonist tiotropium bromide on this process. Differentiated PBEC that were cultured at the air-liquid interface (ALI-PBEC) were infected with HRV-A16 and HRV-1B. Quantitative PCR, immunofluorescence staining, ELISA, periodic acid-Schiff (PAS) staining and immunostaining assays were used to assess the effects of HRV infection. Here we demonstrate that both HRV-A16 and HRV-1B increased mucin (MUC5AC and MUC5B) gene expression and protein release. When exploring this in more detail in HRV-A16-infected epithelial cells, mucin expression was found to be accompanied by increases in expression of SAM-pointed domain-containing Ets-like factor (SPDEF) and SPDEF-regulated genes known to be involved in the regulation of mucin production. We also found that pre-treatment with the purinergic P2R antagonist suramin inhibits HRV-enhanced MUC5AC expression and protein release, implicating involvement of purinergic signaling by extracellular ATP. We furthermore found that both fluticasone and tiotropium decreased HRV-induced mucin production without affecting viral replication, and obtained evidence to suggest that the inhibitory effect of fluticasone involved modulation of SPDEF-regulated genes and extracellular ATP release. These data show that both tiotropium and fluticasone inhibit HRV-induced epithelial mucin production independent of viral clearance, and thus provide insight into the mechanisms underlying beneficial effects of tiotropium and fluticasone in the treatment of COPD, asthma and accompanying exacerbations in these patients. Furthermore, our findings provide additional insight into the mechanisms by which HRV increases epithelial mucin production.


Asunto(s)
Células Epiteliales , Rhinovirus , Células Cultivadas , Fluticasona/farmacología , Humanos , Proteínas Proto-Oncogénicas c-ets , Bromuro de Tiotropio/farmacología
15.
Artículo en Inglés | MEDLINE | ID: mdl-32513797

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic that originated in Wuhan, China, in December 2019 has impacted public health, society, the global economy, and the daily lives of billions of people in an unprecedented manner. There are currently no specific registered antiviral drugs to treat or prevent SARS-CoV-2 infections. Therefore, drug repurposing would be the fastest route to provide at least a temporary solution while better, more specific drugs are being developed. Here, we demonstrate that the antiparasitic drug suramin inhibits SARS-CoV-2 replication, protecting Vero E6 cells with a 50% effective concentration (EC50) of ∼20 µM, which is well below the maximum attainable level in human serum. Suramin also decreased the viral load by 2 to 3 logs when Vero E6 cells or cells of a human lung epithelial cell line (Calu-3 2B4 [referred to here as "Calu-3"]) were treated. Time-of-addition and plaque reduction assays performed on Vero E6 cells showed that suramin acts on early steps of the replication cycle, possibly preventing binding or entry of the virus. In a primary human airway epithelial cell culture model, suramin also inhibited the progression of infection. The results of our preclinical study warrant further investigation and suggest that it is worth evaluating whether suramin provides any benefit for COVID-19 patients, which obviously requires safety studies and well-designed, properly controlled randomized clinical trials.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Suramina/farmacología , Replicación Viral/efectos de los fármacos , Animales , COVID-19 , Línea Celular , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Humanos , Pandemias , SARS-CoV-2 , Células Vero , Carga Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
16.
Sci Rep ; 10(1): 5499, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32218519

RESUMEN

Research on acute and chronic lung diseases would greatly benefit from reproducible availability of alveolar epithelial cells (AEC). Primary alveolar epithelial cells can be derived from human lung tissue but the quality of these cells is highly donor dependent. Here, we demonstrated that culture of EpCAM+ cells derived from human induced pluripotent stem cells (hiPSC) at the physiological air-liquid interface (ALI) resulted in type 2 AEC-like cells (iAEC2) with alveolar characteristics. iAEC2 cells expressed native AEC2 markers (surfactant proteins and LPCAT-1) and contained lamellar bodies. ALI-iAEC2 were used to study alveolar repair over a period of 2 weeks following mechanical wounding of the cultures and the responses were compared with those obtained using primary AEC2 (pAEC2) isolated from resected lung tissue. Addition of the Wnt/ß-catenin activator CHIR99021 reduced wound closure in the iAEC2 cultures but not pAEC2 cultures. This was accompanied by decreased surfactant protein expression and accumulation of podoplanin-positive cells at the wound edge. These results demonstrated the feasibility of studying alveolar repair using hiPSC-AEC2 cultured at the ALI and indicated that this model can be used in the future to study modulation of alveolar repair by (pharmaceutical) compounds.


Asunto(s)
Células Epiteliales Alveolares/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Modelos Biológicos , Células Epiteliales Alveolares/citología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Humanos , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/citología , Alveolos Pulmonares/lesiones , Alveolos Pulmonares/fisiología , Alveolos Pulmonares/fisiopatología , Regeneración/fisiología , Cicatrización de Heridas/fisiología
17.
J Innate Immun ; 12(1): 74-89, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30970352

RESUMEN

Airway epithelium is an important site for local vitamin D (VD) metabolism; this can be negatively affected by inflammatory mediators. VD is an important regulator of respiratory host defense, for example, by increasing the expression of hCAP18/LL-37. TGF-ß1 is increased in chronic obstructive pulmonary disease (COPD), and known to decrease the expression of constitutive host defense mediators such as secretory leukocyte protease inhibitor (SLPI) and polymeric immunoglobulin receptor (pIgR). VD has been shown to affect TGF-ß1-signaling by inhibiting TGF-ß1-induced epithelial-to-mesenchymal transition. However, interactions between VD and TGF-ß1, relevant for the understanding host defense in COPD, are incompletely understood. Therefore, the aim of the present study was to investigate the combined effects of VD and TGF-ß1 on airway epithelial cell host defense mechanisms. Exposure to TGF-ß1 reduced both baseline and VD-induced expression of hCAP18/LL-37, partly by increasing the expression of the VD-degrading enzyme CYP24A1. TGF-ß1 alone decreased the number of secretory club and goblet cells and reduced the expression of constitutive host defense mediators SLPI, s/lPLUNC and pIgR, effects that were not modulated by VD. These results suggest that TGF-ß1 may decrease the respiratory host defense both directly by reducing the expression of host defense mediators, and indirectly by affecting VD-mediated effects such as expression of hCAP18/LL-37.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica/inmunología , Mucosa Respiratoria/inmunología , Factor de Crecimiento Transformador beta1/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Células Cultivadas , Regulación hacia Abajo , Humanos , Inmunidad Innata , Interleucina-1/metabolismo , ARN Interferente Pequeño/genética , Receptores de Inmunoglobulina Polimérica/metabolismo , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/genética , Regulación hacia Arriba , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilasa/metabolismo , Catelicidinas
18.
Eur Respir J ; 51(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29545277

RESUMEN

It is currently unknown how cigarette smoke-induced airway remodelling affects highly expressed respiratory epithelial defence proteins and thereby mucosal host defence.Localisation of a selected set of highly expressed respiratory epithelial host defence proteins was assessed in well-differentiated primary bronchial epithelial cell (PBEC) cultures. Next, PBEC were cultured at the air-liquid interface, and during differentiation for 2-3 weeks exposed daily to whole cigarette smoke. Gene expression, protein levels and epithelial cell markers were subsequently assessed. In addition, functional activities and persistence of the cigarette smoke-induced effects upon cessation were determined.Expression of the polymeric immunoglobulin receptor, secretory leukocyte protease inhibitor and long and short PLUNC (palate, lung and nasal epithelium clone protein) was restricted to luminal cells and exposure of differentiating PBECs to cigarette smoke resulted in a selective reduction of the expression of these luminal cell-restricted respiratory host defence proteins compared to controls. This reduced expression was a consequence of cigarette smoke-impaired end-stage differentiation of epithelial cells, and accompanied by a significant decreased transepithelial transport of IgA and bacterial killing.These findings shed new light on the importance of airway epithelial cell differentiation in respiratory host defence and could provide an additional explanation for the increased susceptibility of smokers and patients with chronic obstructive pulmonary disease to respiratory infections.


Asunto(s)
Bronquios/citología , Diferenciación Celular/efectos de los fármacos , Células Epiteliales/citología , Humo , Productos de Tabaco/toxicidad , Bronquios/inmunología , Células Cultivadas , Células Epiteliales/inmunología , Expresión Génica/efectos de los fármacos , Humanos , Inmunoglobulina A/inmunología , Microscopía Confocal
20.
Physiol Rep ; 5(13)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28701525

RESUMEN

Allergic airways inflammation in asthma is characterized by an airway epithelial gene signature composed of POSTN, CLCA1, and SERPINB2 This Th2 gene signature is proposed as a tool to classify patients with asthma into Th2-high and Th2-low phenotypes. However, many asthmatics smoke and the effects of cigarette smoke exposure on the epithelial Th2 gene signature are largely unknown. Therefore, we investigated the combined effect of IL-13 and whole cigarette smoke (CS) on the Th2 gene signature and the mucin-related genes MUC5AC and SPDEF in air-liquid interface differentiated human bronchial (ALI-PBEC) and tracheal epithelial cells (ALI-PTEC). Cultures were exposed to IL-13 for 14 days followed by 5 days of IL-13 with CS exposure. Alternatively, cultures were exposed once daily to CS for 14 days, followed by 5 days CS with IL-13. POSTN, SERPINB2, and CLCA1 expression were measured 24 h after the last exposure to CS and IL-13. In both models POSTN, SERPINB2, and CLCA1 expression were increased by IL-13. CS markedly affected the IL-13-induced Th2 gene signature as indicated by a reduced POSTN, CLCA1, and MUC5AC expression in both models. In contrast, IL-13-induced SERPINB2 expression remained unaffected by CS, whereas SPDEF expression was additively increased. Importantly, cessation of CS exposure failed to restore IL-13-induced POSTN and CLCA1 expression. We show for the first time that CS differentially affects the IL-13-induced gene signature for Th2-high asthma. These findings provide novel insights into the interaction between Th2 inflammation and cigarette smoke that is important for asthma pathogenesis and biomarker-guided therapy in asthma.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Interleucina-13/metabolismo , Humo/efectos adversos , Productos de Tabaco/efectos adversos , Transcriptoma/efectos de los fármacos , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Tráquea/efectos de los fármacos , Tráquea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...