Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 302, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831335

RESUMEN

The ubiquitination-mediated protein degradation exerts a vital role in the progression of multiple tumors. NEDD4L, which belongs to the E3 ubiquitin ligase NEDD4 family, is related to tumor genesis, metastasis and drug resistance. However, the anti-tumor role of NEDD4L in esophageal carcinoma, and the potential specific recognition substrate remain unclear. Based on public esophageal carcinoma database and clinical sample data, it was discovered in this study that the expression of NEDD4L in esophageal carcinoma was apparently lower than that in atypical hyperplastic esophageal tissue and esophageal squamous epithelium. Besides, patients with high expression of NEDD4L in esophageal carcinoma tissue had longer progression-free survival than those with low expression. Experiments in vivo and in vitro also verified that NEDD4L suppressed the growth and metastasis of esophageal carcinoma. Based on co-immunoprecipitation and proteome analysis, the NEDD4L ubiquitination-degraded protein ITGB4 was obtained. In terms of the mechanism, the HECT domain of NEDD4L specifically bound to the Galx-ß domain of ITGB4, which modified the K915 site of ITGB4 in an ubiquitination manner, and promoted the ubiquitination degradation of ITGB4, thus suppressing the malignant phenotype of esophageal carcinoma.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Esofágicas , Integrina beta4 , Ubiquitina-Proteína Ligasas Nedd4 , Proteolisis , Ubiquitinación , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Humanos , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Animales , Línea Celular Tumoral , Integrina beta4/metabolismo , Integrina beta4/genética , Ratones Desnudos , Ratones , Proliferación Celular , Masculino , Regulación Neoplásica de la Expresión Génica , Femenino
2.
Arch Toxicol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811393

RESUMEN

Assessing the association between candidate single-nucleotide polymorphisms (SNPs) identified by multi-omics approaches and susceptibility to silicosis. RNA-seq analysis was performed to screen the differentially expressed mRNAs in the fibrotic lung tissues of mice exposed to silica particles. Following this, we integrated the SNPs located in the above human homologenes with the silicosis-related genome-wide association study (GWAS) data to select the candidate SNPs. Then, expression quantitative trait locus (eQTL)-SNPs were identified by the GTEx database. Next, we validated the associations between the functional eQTL-SNPs and silicosis susceptibility by additional case-control study. And the contribution of the identified SNP and its host gene in the fibrosis process was further validated by functional experiments. A total of 12 eQTL-SNPs were identified in the screening stage. The results of the validation stage suggested that the variant T allele of rs419540 located in IL12RB1 significantly increased the risk of developing silicosis [additive model: odds ratio (OR) = 1.78, 95% confidence interval (CI) 1.11-2.85, P = 0.017]. Furthermore, the combination of GWAS and the results of validation stage also indicated that the variant T allele of rs419540 in IL12RB1 was associated with increased silicosis risk (additive model: OR = 2.07, 95% CI 1.38-3.12, P < 0.001). Additionally, after knockdown or overexpression of IL12RB1, the levels of pro-inflammatory factors, such as IL-12, IFN-γ, and other pro-inflammatory factors, were correspondingly decreased or increased. The novel eQTL-SNP, rs419540, might increase the risk of silicosis by modulating the expression levels of IL12RB1.

3.
Arch Toxicol ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538875

RESUMEN

To explore the association between apaQTL/eQTL-SNPs and the susceptibility to silicosis. A silicosis-related GWAS was initially conducted to screen for single nucleotide polymorphisms (SNPs) associated with the risk of silicosis. Candidate SNPs with apaQTL and eQTL functions were then obtained from the 3'aQTL-atlas and GTEx databases. Subsequently, additional case-control studies were performed to validate the relationship between the candidate apaQTL/eQTL-SNPs and the risk of silicosis. Finally, experiments were conducted to illustrate APA events occurring at different alleles of the identified apaQTL/eQTL-SNPs. The combined results of the GWAS and iMLDR validations indicate that the variant T allele of the rs2974341 located on SMIM19 (additive model: OR = 0.66, the 95% CI = 0.53-0.84, P = 0.001) and the variant T allele of the rs2390488 located on TMTC4 (additive model: OR = 0.72, 95% CI = 0.57-0.90, P = 0.005) were significantly associated with decreased risk of developing silicosis susceptibility. Furthermore, 3'RACE experiments verified the presence of two poly (A) sites (proximal and distal) in SMIM19, rs2974341 may remotely regulate the binding between miRNA-3646 and SMIM19 with its high LD locus rs2974353 to affect the expression level of SMIM19. The rs2974341 variant T allele may contribute to the generation of the shorter 3'UTR transcript of SMIM19 and affect the binding of miRNA-3646 to the target gene SMIM19. The apaQTL/eQTL-SNPs may provide new perspectives for evaluating the regulatory function of SNPs in the development of silicosis.

4.
Int J Surg ; 110(2): 1052-1067, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016140

RESUMEN

BACKGROUND: This study aimed to elucidate the consistency of differentially expressed hub mRNAs and proteins in lung adenocarcinoma (LUAD) across populations and to construct a comprehensive LUAD prognostic signature. METHODS: The transcriptomic and proteomics data from different populations were standardized and analyzed using the same criteria to identify the consistently differential expressed mRNAs and proteins across genders and races. We then integrated prognosis-related mRNAs with clinical, pathological, and EGFR (epidermal growth factor receptor) mutation data to construct a survival model, subsequently validating it across populations. Through plasma proteomics, plasma proteins that consistently differential expressed with LUAD tissues were screened and validated, with their associations discerned by measuring expressions in tumor tissues and tumor vascular normalization. RESULTS: The consistency rate of differentially expressed mRNAs and proteins was ~20-40%, with ethnic factors leading to about 40-60% consistency of differentially expressed mRNA or protein across populations. The survival model based on the identified eight hub mRNAs as well as stage, smoking status, and EGFR mutations, demonstrated good prognostic prediction capabilities in both Western and East Asian populations, with a higher number of unfavorable variables indicating poorer LUAD prognosis. Notably, GPI expression in tumor tissues was inversely correlated with vascular normalization and positively correlated with plasma GPI expression. CONCLUSION: Our study underscores the significance of integrating transcriptomics and proteomics data, emphasizing the need to account for genetic diversity among ethnic groups. The developed survival model may offer a holistic perspective on LUAD progression, enhancing prognosis and therapeutic strategies.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Masculino , Femenino , Humanos , Pronóstico , Adenocarcinoma del Pulmón/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA