Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(1)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36677203

RESUMEN

It is very important to rapidly test the key indicators of water in the field to fully evaluate the quality of the regional water environment. However, a high-resolution measuring device that can generate small currents for low-concentration analytes in water samples is often bulky, complex to operate, and difficult for data sharing. This work introduces a portable multi-channel electrochemical device with a small volume, good interaction, and data-sharing capabilities called PMCED. The PMCED provides an easy-to-operate graphical interactive interface to conveniently set the parameters for cyclic voltammetry or a differential pulse method performed by the four electrode channels. At the same time, the device, with a current sensitivity of 100 nA V-1, was applied to the detection of water samples with high background current and achieved a high-resolution measurement at low current levels. The PMCED uses the Narrow Band Internet of Things (NB-IoT) to meet the needs for uploading data to the cloud in remote areas. The electrochemical signal preprocessing and chemometrics models run in the cloud, and the final results are visualized on a web page, providing a remote access channel for on-site testing results.

2.
J Texture Stud ; 54(1): 3-20, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36222444

RESUMEN

Oral processing is a combination of various actions, the detailed description of which has always been the subject of relevant research. By means of imaging technology and sensory evaluation, more knowledge of oral processing have been accumulated. Presently, the advances in sensory technology have added quantitative parameters to the qualitative description of oral processing, which also enriched the specifics of each action. Previous studies have shown that oral processing includes lip closure, dental occlusion, masticatory muscles activity, tongue movement, and swallowing, whose processing contains rich information such as the movement of organ and the intensity of organ contacts. "Quantification" was taken in this review as the basic feature of in situ detection information, the relevant parameters and feasible methods for the quantitative description of each activity was recorded in detail. In addition, basic problems and feasible optimization schemes of the existing in situ detection device are also proposed in the hope of promoting the development of in situ detection device thus providing available information for the description of oral processing.


Asunto(s)
Deglución , Boca , Boca/fisiología , Deglución/fisiología
3.
Proc Inst Mech Eng H ; 235(11): 1265-1273, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34281449

RESUMEN

The tissue engineering technology provides a new way to solve bone defect. Porous scaffolds supply support and adhesion space for cells. Design of pore structure of scaffolds is one of the key points in tissue engineering scaffolds, because the structure affects the performance of scaffolds directly. In this paper, mechanical properties of square porous Ti6Al4V scaffolds are studied. By finite element simulation, it can be found that the support structure in vertical direction assumes main force, so the structure can be optimized through relative density mapping (RDM) method. The modified arch structures can improve bearing effect of structure with the same porosity. The designed structures are obtained by selective laser melting. Results of compressive strength indicate that the compressive strength decreases with the increase of porosity. When the porosity is between 40% and 60%, the error of compressive strength calculated by Gibson-Ashby model is below 8%. Moreover, the optimized structure clears a better bearing effect, and the bearing capacity can be increased by 20%-30% under the same porosity.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Aleaciones , Fuerza Compresiva , Ensayo de Materiales , Porosidad , Titanio
4.
Biodes Manuf ; 4(2): 344-378, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33425460

RESUMEN

Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine. Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels. Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues. The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering. Recent advances in 3D printing have facilitated fabrication of vascular scaffolds, contributing to broad prospects for tissue vascularization. This review presents state of the art on modeling methods, print materials and preparation processes for fabrication of vascular scaffolds, and discusses the advantages and application fields of each method. Specially, significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized. Print materials and preparation processes are discussed in detail. And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting, electrospinning, and Lego-like construction. And related studies are exemplified. Transformation of vascular scaffolds to clinical application is discussed. Also, four trends of 3D printing of tissue engineering vascular scaffolds are presented, including machine learning, near-infrared photopolymerization, 4D printing, and combination of self-assembly and 3D printing-based methods.

5.
Bioact Mater ; 6(5): 1283-1307, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33251379

RESUMEN

The demand for artificial organs has greatly increased because of various aging-associated diseases and the wide need for organ transplants. A recent trend in tissue engineering is the precise reconstruction of tissues by the growth of cells adhering to bioscaffolds, which are three-dimensional (3D) structures that guide tissue and organ formation. Bioscaffolds used to fabricate bionic tissues should be able to not only guide cell growth but also regulate cell behaviors. Common regulation methods include biophysical and biochemical stimulations. Biophysical stimulation cues include matrix hardness, external stress and strain, surface topology, and electromagnetic field and concentration, whereas biochemical stimulation cues include growth factors, proteins, kinases, and magnetic nanoparticles. This review discusses bioink preparation, 3D bioprinting (including extrusion-based, inkjet, and ultraviolet-assisted 3D bioprinting), and regulation of cell behaviors. In particular, it provides an overview of state-of-the-art methods and devices for regulating cell growth and tissue formation and the effects of biophysical and biochemical stimulations on cell behaviors. In addition, the fabrication of bioscaffolds embedded with regulatory modules for biomimetic tissue preparation is explained. Finally, challenges in cell growth regulation and future research directions are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...