Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 12(1)2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212123

RESUMEN

BACKGROUND: Treatment with immune checkpoint inhibitors (ICIs) targeting programmed death-1 (PD-1) can yield durable antitumor responses, yet not all patients respond to ICIs. Current approaches to select patients who may benefit from anti-PD-1 treatment are insufficient. 5-hydroxymethylation (5hmC) analysis of plasma-derived cell-free DNA (cfDNA) presents a novel non-invasive approach for identification of therapy response biomarkers which can tackle challenges associated with tumor biopsies such as tumor heterogeneity and serial sample collection. METHODS: 151 blood samples were collected from 31 patients with non-small cell lung cancer (NSCLC) before therapy started and at multiple time points while on therapy. Blood samples were processed to obtain plasma-derived cfDNA, followed by enrichment of 5hmC-containing cfDNA fragments through biotinylation via a two-step chemistry and binding to streptavidin coated beads. 5hmC-enriched cfDNA and whole genome libraries were prepared in parallel and sequenced to obtain whole hydroxymethylome and whole genome plasma profiles, respectively. RESULTS: Comparison of on-treatment time point to matched pretreatment samples from same patients revealed that anti-PD-1 treatment induced distinct changes in plasma cfDNA 5hmC profiles of responding patients, as judged by Response evaluation criteria in solid tumors, relative to non-responders. In responders, 5hmC accumulated over genes involved in immune activation such as inteferon (IFN)-γ and IFN-α response, inflammatory response and tumor necrosis factor (TNF)-α signaling, whereas in non-responders 5hmC increased over epithelial to mesenchymal transition genes. Molecular response to anti-PD-1 treatment, as measured by 5hmC changes in plasma cfDNA profiles were observed early on, starting with the first cycle of treatment. Comparison of pretreatment plasma samples revealed that anti-PD-1 treatment response and resistance associated genes can be captured by 5hmC profiling of plasma-derived cfDNA. Furthermore, 5hmC profiling of pretreatment plasma samples was able to distinguish responders from non-responders using T cell-inflamed gene expression profile, which was previously identified by tissue RNA analysis. CONCLUSIONS: These results demonstrate that 5hmC profiling can identify response and resistance associated biological pathways in plasma-derived cfDNA, offering a novel approach for non-invasive prediction and monitoring of immunotherapy response in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transición Epitelial-Mesenquimal , Biología
2.
Clin Gastroenterol Hepatol ; 21(7): 1802-1809.e6, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36967102

RESUMEN

BACKGROUND & AIMS: Early detection of pancreatic cancer (PaC) can drastically improve survival rates. Approximately 25% of subjects with PaC have type 2 diabetes diagnosed within 3 years prior to the PaC diagnosis, suggesting that subjects with type 2 diabetes are at high risk of occult PaC. We have developed an early-detection PaC test, based on changes in 5-hydroxymethylcytosine (5hmC) signals in cell-free DNA from plasma. METHODS: Blood was collected from 132 subjects with PaC and 528 noncancer subjects to generate epigenomic and genomic feature sets yielding a predictive PaC signal algorithm. The algorithm was validated in a blinded cohort composed of 102 subjects with PaC, 2048 noncancer subjects, and 1524 subjects with non-PaCs. RESULTS: 5hmC differential profiling and additional genomic features enabled the development of a machine learning algorithm capable of distinguishing subjects with PaC from noncancer subjects with high specificity and sensitivity. The algorithm was validated with a sensitivity for early-stage (stage I/II) PaC of 68.3% (95% confidence interval [CI], 51.9%-81.9%) and an overall specificity of 96.9% (95% CI, 96.1%-97.7%). CONCLUSIONS: The PaC detection test showed robust early-stage detection of PaC signal in the studied cohorts with varying type 2 diabetes status. This assay merits further clinical validation for the early detection of PaC in high-risk individuals.


Asunto(s)
Ácidos Nucleicos Libres de Células , Diabetes Mellitus Tipo 2 , Neoplasias Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Epigenómica , Detección Precoz del Cáncer , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética
3.
Cancer Res ; 82(21): 3888-3902, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36251389

RESUMEN

Analysis of DNA methylation is a valuable tool to understand disease progression and is increasingly being used to create diagnostic and prognostic clinical biomarkers. While conversion of cytosine to 5-methylcytosine (5mC) commonly results in transcriptional repression, further conversion to 5-hydroxymethylcytosine (5hmC) is associated with transcriptional activation. Here we perform the first study integrating whole-genome 5hmC with DNA, 5mC, and transcriptome sequencing in clinical samples of benign, localized, and advanced prostate cancer. 5hmC is shown to mark activation of cancer drivers and downstream targets. Furthermore, 5hmC sequencing revealed profoundly altered cell states throughout the disease course, characterized by increased proliferation, oncogenic signaling, dedifferentiation, and lineage plasticity to neuroendocrine and gastrointestinal lineages. Finally, 5hmC sequencing of cell-free DNA from patients with metastatic disease proved useful as a prognostic biomarker able to identify an aggressive subtype of prostate cancer using the genes TOP2A and EZH2, previously only detectable by transcriptomic analysis of solid tumor biopsies. Overall, these findings reveal that 5hmC marks epigenomic activation in prostate cancer and identify hallmarks of prostate cancer progression with potential as biomarkers of aggressive disease. SIGNIFICANCE: In prostate cancer, 5-hydroxymethylcytosine delineates oncogene activation and stage-specific cell states and can be analyzed in liquid biopsies to detect cancer phenotypes. See related article by Wu and Attard, p. 3880.


Asunto(s)
5-Metilcitosina , Neoplasias de la Próstata , Masculino , Humanos , Próstata , Biopsia
4.
Blood Cancer Discov ; 3(4): 346-367, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35532363

RESUMEN

The conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is a key step in DNA demethylation that is mediated by ten-eleven translocation (TET) enzymes, which require ascorbate/vitamin C. Here, we report the 5hmC landscape of normal hematopoiesis and identify cell type-specific 5hmC profiles associated with active transcription and chromatin accessibility of key hematopoietic regulators. We utilized CRISPR/Cas9 to model TET2 loss-of-function mutations in primary human hematopoietic stem and progenitor cells (HSPC). Disrupted cells exhibited increased colonies in serial replating, defective erythroid/megakaryocytic differentiation, and in vivo competitive advantage and myeloid skewing coupled with reduction of 5hmC at erythroid-associated gene loci. Azacitidine and ascorbate restored 5hmC abundance and slowed or reverted the expansion of TET2-mutant clones in vivo. These results demonstrate the key role of 5hmC in normal hematopoiesis and TET2-mutant phenotypes and raise the possibility of utilizing these agents to further our understanding of preleukemia and clonal hematopoiesis. SIGNIFICANCE: We show that 5-hydroxymethylation profiles are cell type-specific and associated with transcriptional abundance and chromatin accessibility across human hematopoiesis. TET2 loss caused aberrant growth and differentiation phenotypes and disrupted 5hmC and transcriptional landscapes. Treatment of TET2 KO HSPCs with ascorbate or azacitidine reverted 5hmC profiles and restored aberrant phenotypes. This article is highlighted in the In This Issue feature, p. 265.


Asunto(s)
Dioxigenasas , Síndromes Mielodisplásicos , Preleucemia , Azacitidina/farmacología , Cromatina/genética , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Hematopoyesis/genética , Humanos , Proteínas Proto-Oncogénicas/genética
5.
Nat Commun ; 11(1): 6161, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33268789

RESUMEN

DNA 5-hydroxymethylcytosine (5hmC) modification is known to be associated with gene transcription and frequently used as a mark to investigate dynamic DNA methylation conversion during mammalian development and in human diseases. However, the lack of genome-wide 5hmC profiles in different human tissue types impedes drawing generalized conclusions about how 5hmC is implicated in transcription activity and tissue specificity. To meet this need, we describe the development of a 5hmC tissue map by characterizing the genomic distributions of 5hmC in 19 human tissues derived from ten organ systems. Subsequent sequencing results enabled the identification of genome-wide 5hmC distributions that uniquely separates samples by tissue type. Further comparison of the 5hmC profiles with transcriptomes and histone modifications revealed that 5hmC is preferentially enriched on tissue-specific gene bodies and enhancers. Taken together, the results provide an extensive 5hmC map across diverse human tissue types that suggests a potential role of 5hmC in tissue-specific development; as well as a resource to facilitate future studies of DNA demethylation in pathogenesis and the development of 5hmC as biomarkers.


Asunto(s)
5-Metilcitosina/análogos & derivados , Citosina/metabolismo , ADN/metabolismo , Elementos de Facilitación Genéticos , Epigénesis Genética , Genoma Humano , Factores de Transcripción/metabolismo , 5-Metilcitosina/metabolismo , Mapeo Cromosómico , Islas de CpG , ADN/genética , Metilación de ADN , Histonas/genética , Histonas/metabolismo , Humanos , Especificidad de Órganos , Factores de Transcripción/genética , Activación Transcripcional
6.
Nat Commun ; 11(1): 5270, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33077732

RESUMEN

Pancreatic cancer is often detected late, when curative therapies are no longer possible. Here, we present non-invasive detection of pancreatic ductal adenocarcinoma (PDAC) by 5-hydroxymethylcytosine (5hmC) changes in circulating cell free DNA from a PDAC cohort (n = 64) in comparison with a non-cancer cohort (n = 243). Differential hydroxymethylation is found in thousands of genes, most significantly in genes related to pancreas development or function (GATA4, GATA6, PROX1, ONECUT1, MEIS2), and cancer pathogenesis (YAP1, TEAD1, PROX1, IGF1). cfDNA hydroxymethylome in PDAC cohort is differentially enriched for genes that are commonly de-regulated in PDAC tumors upon activation of KRAS and inactivation of TP53. Regularized regression models built using 5hmC densities in genes perform with AUC of 0.92 (discovery dataset, n = 79) and 0.92-0.94 (two independent test sets, n = 228). Furthermore, tissue-derived 5hmC features can be used to classify PDAC cfDNA (AUC = 0.88). These findings suggest that 5hmC changes enable classification of PDAC even during early stage disease.


Asunto(s)
5-Metilcitosina/análogos & derivados , Ácidos Nucleicos Libres de Células/metabolismo , Neoplasias Pancreáticas/genética , 5-Metilcitosina/metabolismo , Adulto , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/metabolismo , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/genética , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Neoplasias Pancreáticas
7.
Mol Cancer Ther ; 17(8): 1727-1738, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29866747

RESUMEN

Historically, phenotypic-based drug discovery has yielded a high percentage of novel drugs while uncovering new tumor biology. CC-671 was discovered using a phenotypic screen for compounds that preferentially induced apoptosis in triple-negative breast cancer cell lines while sparing luminal breast cancer cell lines. Detailed in vitro kinase profiling shows CC-671 potently and selectively inhibits two kinases-TTK and CLK2. Cellular mechanism of action studies demonstrate that CC-671 potently inhibits the phosphorylation of KNL1 and SRp75, direct TTK and CLK2 substrates, respectively. Furthermore, CC-671 causes mitotic acceleration and modification of pre-mRNA splicing leading to apoptosis, consistent with cellular TTK and CLK inhibition. Correlative analysis of genomic and potency data against a large panel of breast cancer cell lines identifies breast cancer cells with a dysfunctional G1-S checkpoint as more sensitive to CC-671, suggesting synthetic lethality between G1-S checkpoint and TTK/CLK2 inhibition. Furthermore, significant in vivo CC-671 efficacy was demonstrated in two cell line-derived and one patient tumor-derived xenograft models of triple-negative breast cancer (TNBC) following weekly dosing. These findings are the first to demonstrate the unique inhibitory combination activity of a dual TTK/CLK2 inhibitor that preferably kills TNBC cells and shows synthetic lethality with a compromised G1-S checkpoint in breast cancer cell lines. On the basis of these data, CC-671 was moved forward for clinical development as a potent and selective TTK/CLK2 inhibitor in a subset of patients with TNBC. Mol Cancer Ther; 17(8); 1727-38. ©2018 AACR.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Mutaciones Letales Sintéticas/efectos de los fármacos , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
8.
Br J Haematol ; 172(6): 889-901, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26914976

RESUMEN

Pomalidomide is an IMiD(®) immunomodulatory agent, which has shown clinically significant benefits in relapsed and/or refractory multiple myeloma (rrMM) patients when combined with dexamethasone, regardless of refractory status to lenalidomide or bortezomib. (Schey et al, ; San Miguel et al, 2013; Richardson et al, 2014; Scott, ) In this work, we present preclinical data showing that the combination of pomalidomide with dexamethasone (PomDex) demonstrates potent anti-proliferative and pro-apoptotic activity in both lenalidomide-sensitive and lenalidomide-resistant MM cell lines. PomDex also synergistically inhibited tumour growth compared with single-agent treatment in xenografts of lenalidomide-resistant H929 R10-1 cells. Typical hallmarks of IMiD compound activity, including IKZF3 (Aiolos) degradation, and the downregulation of interferon regulatory factor (IRF) 4 and MYC, seen in lenalidomide-sensitive H929 MM cell lines, were also observed in PomDex-treated lenalidomide-resistant H929 MM cells. Remarkably, this resulted in strong, synergistic effects on the induction of apoptosis in both lenalidomide-sensitive and resistant MM cells. Furthermore, gene expression profiling revealed a unique differential gene expression pattern in PomDex-treated samples, highlighted by the modulation of pro-apoptotic pathways in lenalidomide-resistant cells. These results provide key insights into molecular mechanisms of PomDex in the lenalidomide-resistant setting.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dexametasona/administración & dosificación , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunomodulación/efectos de los fármacos , Lenalidomida , Ratones SCID , Mieloma Múltiple/genética , Mieloma Múltiple/inmunología , Mieloma Múltiple/patología , Talidomida/administración & dosificación , Talidomida/análogos & derivados , Talidomida/uso terapéutico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
9.
Br J Haematol ; 164(6): 811-21, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24328678

RESUMEN

Cereblon (CRBN), the molecular target of lenalidomide and pomalidomide, is a substrate receptor of the cullin ring E3 ubiquitin ligase complex, CRL4(CRBN) . T cell co-stimulation by lenalidomide or pomalidomide is cereblon dependent: however, the CRL4(CRBN) substrates responsible for T cell co-stimulation have yet to be identified. Here we demonstrate that interaction of the transcription factors Ikaros (IKZF1, encoded by the IKZF1 gene) and Aiolos (IKZF3, encoded by the IKZF3 gene) with CRL4(CRBN) is induced by lenalidomide or pomalidomide. Each agent promotes Aiolos and Ikaros binding to CRL4(CRBN) with enhanced ubiquitination leading to cereblon-dependent proteosomal degradation in T lymphocytes. We confirm that Aiolos and Ikaros are transcriptional repressors of interleukin-2 expression. The findings link lenalidomide- or pomalidomide-induced degradation of these transcriptional suppressors to well documented T cell activation. Importantly, Aiolos could serve as a proximal pharmacodynamic marker for lenalidomide and pomalidomide, as healthy human subjects administered lenalidomide demonstrated Aiolos degradation in their peripheral T cells. In conclusion, we present a molecular model in which drug binding to cereblon results in the interaction of Ikaros and Aiolos to CRL4(CRBN) , leading to their ubiquitination, subsequent proteasomal degradation and T cell activation.


Asunto(s)
Factor de Transcripción Ikaros/metabolismo , Péptido Hidrolasas/metabolismo , Linfocitos T/efectos de los fármacos , Talidomida/análogos & derivados , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Inhibidores de la Angiogénesis/farmacología , Humanos , Factor de Transcripción Ikaros/genética , Factores Inmunológicos/farmacología , Lenalidomida , Péptido Hidrolasas/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Linfocitos T/metabolismo , Talidomida/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
10.
Front Immunol ; 4: 101, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23641243

RESUMEN

Recent clinical studies suggest that adoptive transfer of donor-derived natural killer (NK) cells may improve clinical outcome in hematological malignancies and some solid tumors by direct anti-tumor effects as well as by reduction of graft versus host disease (GVHD). NK cells have also been shown to enhance transplant engraftment during allogeneic hematopoietic stem cell transplantation (HSCT) for hematological malignancies. The limited ex vivo expansion potential of NK cells from peripheral blood (PB) or umbilical cord blood (UCB) has however restricted their therapeutic potential. Here we define methods to efficiently generate NK cells from donor-matched, full-term human placenta perfusate (termed Human Placenta-Derived Stem Cell, HPDSC) and UCB. Following isolation from cryopreserved donor-matched HPDSC and UCB units, CD56+CD3- placenta-derived NK cells, termed pNK cells, were expanded in culture for up to 3 weeks to yield an average of 1.2 billion cells per donor that were >80% CD56+CD3-, comparable to doses previously utilized in clinical applications. Ex vivo-expanded pNK cells exhibited a marked increase in anti-tumor cytolytic activity coinciding with the significantly increased expression of NKG2D, NKp46, and NKp44 (p < 0.001, p < 0.001, and p < 0.05, respectively). Strong cytolytic activity was observed against a wide range of tumor cell lines in vitro. pNK cells display a distinct microRNA (miRNA) expression profile, immunophenotype, and greater anti-tumor capacity in vitro compared to PB NK cells used in recent clinical trials. With further development, pNK may represent a novel and effective cellular immunotherapy for patients with high clinical needs and few other therapeutic options.

11.
PLoS One ; 5(2): e9001, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20126405

RESUMEN

BACKGROUND: The cytidine nucleoside analogs azacitidine (AZA) and decitabine (DAC) are used for the treatment of patients with myelodysplastic syndromes and acute myeloid leukemia (AML). Few non-clinical studies have directly compared the mechanisms of action of these agents in a head-to-head fashion, and the agents are often viewed as mechanistically similar DNA hypomethylating agents. To better understand the similarities and differences in mechanisms of these drugs, we compared their in vitro effects on several end points in human AML cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Both drugs effected DNA methyltransferase 1 depletion, DNA hypomethylation, and DNA damage induction, with DAC showing equivalent activity at concentrations 2- to 10-fold lower than AZA. At concentrations above 1 microM, AZA had a greater effect than DAC on reducing cell viability. Both drugs increased the sub-G1 fraction and apoptosis markers, with AZA decreasing all cell cycle phases and DAC causing an increase in G2-M. Total protein synthesis was reduced only by AZA, and drug-modulated gene expression profiles were largely non-overlapping. CONCLUSIONS/SIGNIFICANCE: These data demonstrate shared mechanisms of action of AZA and DAC on DNA-mediated markers of activity, but distinctly different effects in their actions on cell viability, protein synthesis, cell cycle, and gene expression. The differential effects of AZA may be mediated by RNA incorporation, as the distribution of AZA in nucleic acid of KG-1a cells was 65:35, RNA:DNA.


Asunto(s)
Apoptosis/efectos de los fármacos , Azacitidina/análogos & derivados , Azacitidina/farmacología , Ciclo Celular/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Enfermedad Aguda , Antimetabolitos Antineoplásicos/farmacología , Western Blotting , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Metilación de ADN/efectos de los fármacos , Decitabina , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
12.
Mol Cell Proteomics ; 6(3): 413-24, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17192258

RESUMEN

Cellular responses to inputs that vary both temporally and spatially are determined by complex relationships between the components of cell signaling networks. Analysis of these relationships requires access to a wide range of experimental reagents and techniques, including the ability to express the protein components of the model cells in a variety of contexts. As part of the Alliance for Cellular Signaling, we developed a robust method for cloning large numbers of signaling ORFs into Gateway entry vectors, and we created a wide range of compatible expression platforms for proteomics applications. To date, we have generated over 3000 plasmids that are available to the scientific community via the American Type Culture Collection. We have established a website at www.signaling-gateway.org/data/plasmid/ that allows users to browse, search, and blast Alliance for Cellular Signaling plasmids. The collection primarily contains murine signaling ORFs with an emphasis on kinases and G protein signaling genes. Here we describe the cloning, databasing, and application of this proteomics resource for large scale subcellular localization screens in mammalian cell lines.


Asunto(s)
Proteínas Quinasas/metabolismo , Proteómica , Animales , Línea Celular , Clonación Molecular , ADN Complementario/genética , Bases de Datos Factuales , Ratones , Sistemas de Lectura Abierta/genética , Plásmidos , Proteínas Quinasas/genética , Transducción de Señal
13.
Nature ; 420(6916): 716-7, 2002 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-12478304

RESUMEN

The Alliance for Cellular Signaling (AfCS)-Nature Molecule Pages will be a comprehensive database of key facts about more than 3,000 proteins involved in cell signalling. Each entry will be created by invited experts and be peer-reviewed. Alongside the large-scale experiments being conducted by the AfCS scientists, the wealth of information contained in this database offers the potential of accelerating the pace of discovery in signal transduction research.


Asunto(s)
Bases de Datos Factuales , Investigación , Transducción de Señal , Automatización , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Gestión de la Información , Revisión de la Investigación por Pares , Unión Proteica
14.
Nature ; 420(6916): 703-6, 2002 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-12478301

RESUMEN

The Alliance for Cellular Signaling is a large-scale collaboration designed to answer global questions about signalling networks. Pathways will be studied intensively in two cells--B lymphocytes (the cells of the immune system) and cardiac myocytes--to facilitate quantitative modelling. One goal is to catalyse complementary research in individual laboratories; to facilitate this, all alliance data are freely available for use by the entire research community.


Asunto(s)
Linfocitos B/fisiología , Miocitos Cardíacos/fisiología , Proyectos de Investigación , Investigadores/organización & administración , Investigación/organización & administración , Transducción de Señal , Linfocitos B/citología , Conducta Cooperativa , Bases de Datos Factuales , Cooperación Internacional , Internet , Ligandos , Modelos Biológicos , Miocitos Cardíacos/citología , Estados Unidos , Recursos Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...