Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 289(1973): 20220251, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35473386

RESUMEN

Although climate-driven phenological shifts have been documented for many taxa across the globe, we still lack knowledge of the consequences they have on populations. Here, we used a comprehensive database comprising 553 populations of 51 species of north-western Mediterranean butterflies to investigate the relationship between phenology and population trends in a 26-year period. Phenological trends and sensitivity to climate, along with various species traits, were used to predict abundance trends. Key ecological traits accounted for a general decline of more than half of the species, most of which, surprisingly, did not change their phenology under a climate warming scenario. However, this was related to the regional cooling in a short temporal window that includes late winter and early spring, during which most species concentrate their development. Finally, we demonstrate that phenological sensitivity-but not phenological trends-predicted population trends, and argue that species that best adjust their phenology to inter-annual climate variability are more likely to maintain a synchronization with trophic resources, thereby mitigating possible negative effects of climate change. Our results reflect the importance of assessing not only species' trends over time but also species' abilities to respond to a changing climate based on their sensitivity to temperature.


Asunto(s)
Mariposas Diurnas , Animales , Cambio Climático , Fenotipo , Estaciones del Año , Temperatura
2.
Glob Chang Biol ; 25(8): 2825-2840, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31012512

RESUMEN

The mechanisms translating global circulation changes into rapid abrupt shifts in forest carbon capture in semi-arid biomes remain poorly understood. Here, we report unprecedented multidecadal shifts in forest carbon uptake in semi-arid Mediterranean pine forests in Spain over 1950-2012. The averaged carbon sink reduction varies between 31% and 37%, and reaches values in the range of 50% in the most affected forest stands. Regime shifts in forest carbon uptake are associated with climatic early warning signals, decreased forest regional synchrony and reduced long-term carbon sink resilience. We identify the mechanisms linked to ocean multidecadal variability that shape regime shifts in carbon capture. First, we show that low-frequency variations of the surface temperature of the Atlantic Ocean induce shifts in the non-stationary effects of El Niño Southern Oscillation (ENSO) on regional forest carbon capture. Modelling evidence supports that the non-stationary effects of ENSO can be propagated from tropical areas to semi-arid Mediterranean biomes through atmospheric wave trains. Second, decadal changes in the Atlantic Multidecadal Oscillation (AMO) significantly alter sea-air heat exchanges, modifying in turn ocean vapour transport over land and land surface temperatures, and promoting sustained drought conditions in spring and summer that reduce forest carbon uptake. Third, we show that lagged effects of AMO on the winter North Atlantic Oscillation also contribute to the maintenance of long-term droughts. Finally, we show that the reported strong, negative effects of ocean surface temperature (AMO) on forest carbon uptake in the last decades are unprecedented over the last 150 years. Our results provide new, unreported explanations for carbon uptake shifts in these drought-prone forests and review the expected impacts of global warming on the profiled mechanisms.


Asunto(s)
Carbono , Bosques , Océano Atlántico , Océanos y Mares , España , Temperatura
3.
Proc Biol Sci ; 284(1846)2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28077766

RESUMEN

Historical species records offer an excellent opportunity to test the predictive ability of range forecasts under climate change, but researchers often consider that historical records are scarce and unreliable, besides the datasets collected by renowned naturalists. Here, we demonstrate the relevance of biodiversity records developed through citizen-science initiatives generated outside the natural sciences academia. We used a Spanish geographical dictionary from the mid-nineteenth century to compile over 10 000 freshwater fish records, including almost 4 000 brown trout (Salmo trutta) citations, and constructed a historical presence-absence dataset covering over 2 000 10 × 10 km cells, which is comparable to present-day data. There has been a clear reduction in trout range in the past 150 years, coinciding with a generalized warming. We show that current trout distribution can be accurately predicted based on historical records and past and present values of three air temperature variables. The models indicate a consistent decline of average suitability of around 25% between 1850s and 2000s, which is expected to surpass 40% by the 2050s. We stress the largely unexplored potential of historical species records from non-academic sources to open new pathways for long-term global change science.


Asunto(s)
Cambio Climático , Monitoreo del Ambiente , Trucha , Animales , Agua Dulce , Temperatura
4.
Proc Natl Acad Sci U S A ; 108(4): 1474-8, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21220333

RESUMEN

Climate change is progressively increasing severe drought events in the Northern Hemisphere, causing regional tree die-off events and contributing to the global reduction of the carbon sink efficiency of forests. There is a critical lack of integrated community-wide assessments of drought-induced responses in forests at the macroecological scale, including defoliation, mortality, and food web responses. Here we report a generalized increase in crown defoliation in southern European forests occurring during 1987-2007. Forest tree species have consistently and significantly altered their crown leaf structures, with increased percentages of defoliation in the drier parts of their distributions in response to increased water deficit. We assessed the demographic responses of trees associated with increased defoliation in southern European forests, specifically in the Iberian Peninsula region. We found that defoliation trends are paralleled by significant increases in tree mortality rates in drier areas that are related to tree density and temperature effects. Furthermore, we show that severe drought impacts are associated with sudden changes in insect and fungal defoliation dynamics, creating long-term disruptive effects of drought on food webs. Our results reveal a complex geographical mosaic of species-specific responses to climate change-driven drought pressures on the Iberian Peninsula, with an overwhelmingly predominant trend toward increased drought damage.


Asunto(s)
Cambio Climático , Ecosistema , Cadena Alimentaria , Árboles/fisiología , Animales , Clima , Sequías , Ecología/tendencias , Europa (Continente) , Geografía , Insectos/fisiología , Modelos Lineales , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Dinámica Poblacional , Medición de Riesgo/tendencias , Factores de Riesgo , Estaciones del Año , Especificidad de la Especie , Árboles/clasificación , Árboles/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...