Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Acta Trop ; 258: 107359, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142548

RESUMEN

With growing interest in natural compounds as alternative mosquito repellents, assessing the toxicity and structure of potential repellent naturals like thymol (monoterpene phenol) and geraniol (monoterpene alcohol) is vital for understanding their stability and human impact. This study aimed to determine the structural, toxicity, and binding profiles of thymol and geraniol using computational predictions, xTB metadynamics, quantum mechanics, and principal component analysis. Toxicity studies using Protox-II, T.E.S.T, and SwissADME indicated that thymol and geraniol belong to toxicity class 4 and 5, respectively, with low toxicity predictions in other endpoints. Overall pharmacokinetic profile was generated via pkCSM. Off-target predictions via SwissTarget Predictions, LigTMap, Pharmapper, and SuperPred showed that these molecules can bind to 614 human proteins. The degradation of thymol and geraniol were performed using xTB metadynamics and the outcomes showed that the degradants for both compounds were stable and had lower toxicity profile. Nine tautomers were generated via quantum mechanics for thymol and four for geraniol, with RMSD ranging from 3.8 to 6.3 Å for thymol and 3.6 to 4 Å for geraniol after superimpositions. DFT studies found that HOMO-LUMO values and electronegativity parameters of thymol and geraniol did not differ significantly from their isomers. Binding affinity studies against 614 proteins, analysed via PCA and violin plots, highlighted the probable range of binding. These multifaceted in-silico findings corroborate the stability and potential utility of thymol and geraniol as safer alternatives in repellent applications.


Asunto(s)
Monoterpenos Acíclicos , Repelentes de Insectos , Proteoma , Timol , Timol/química , Timol/farmacología , Humanos , Monoterpenos Acíclicos/química , Repelentes de Insectos/química , Repelentes de Insectos/farmacología , Teoría Cuántica , Terpenos/química
2.
Mol Biotechnol ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004678

RESUMEN

Alzheimer's disease (AD) poses a significant global health challenge, necessitating the exploration of novel therapeutic strategies. Fyn Tyrosine Kinase has emerged as a key player in AD pathogenesis, making it an attractive target for drug development. This study focuses on investigating the potential of Papaveroline as a drug candidate for AD by targeting Fyn Tyrosine Kinase. The research employed high-throughput virtual screening and QSAR analysis were conducted to identify compounds with optimal drug-like properties, emphasizing adherence to ADMET parameters for further evaluation. Molecular dynamics simulations to analyze the binding interactions between Papaveroline and Staurosporine with Fyn Tyrosine Kinase over a 200-ns period. The study revealed detailed insights into the binding mechanisms and stability of the Papaveroline-Fyn complex, showcasing the compound's potential as an inhibitor of Fyn Tyrosine Kinase. Comparative analysis with natural compounds and a reference compound highlighted Papaveroline's unique characteristics and promising therapeutic implications for AD treatment. Overall, the findings underscore Papaveroline's potential as a valuable drug candidate for targeting Fyn Tyrosine Kinase in AD therapy, offering new avenues for drug discovery in neurodegenerative diseases. This study contributes to advancing our understanding of molecular interactions in AD pathogenesis and paves the way for further research and development in this critical area.

3.
Mol Biotechnol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044065

RESUMEN

A comprehensive examination of Aedes aegypti's proteome to detect key proteins that can be targeted with small molecules can disrupt blood feeding and disease transmission. However, research currently only focuses on finding repellent-like compounds, limiting studies on identifying unexplored proteins in its proteome. High-throughput analysis generates vast amounts of data, raising concerns about accessibility and usability. Establishing a dedicated database is a solution, centralizing information on identified proteins, functions, and modeled structures for easy access and research. This study focuses on scrutinizing key proteins in A. aegypti, modeling their structures using RaptorX standalone tool, identification of druggable binding sites using BiteNet, validating the models via Ramachandran plot studies and refining them via 50-ns molecular dynamic simulations using Schrodinger Maestro. By analyzing ~ 18 k proteins in the proteome of A. aegypti in our previous studies, all proteins involved in the light and dark circadian rhythm of the mosquito, inclusive of proteins in blood feeding, metabolism, etc. were chosen for the current study. The outcome is UAAPRD, a unique repository housing information on hundreds of previously unmodeled and un-simulated mosquito proteins. This robust MYSQL database ( https://uaaprd.onrender.com/user ) houses data on 309 modeled & simulated proteins of A. aegypti. It allows users to obtain protein data, view evolutionary analysis data of the protein categories, visualize proteins of interest, and send request to screen against the pharmacophore models present in UAAPRD against ligand of interest. This study offers crucial insights for developing targeted studies, which will ultimately contribute to more effective vector control strategies.

4.
Int J Biol Macromol ; 273(Pt 1): 133033, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38862055

RESUMEN

One of the technological fields that is developing the fastest is quantum computing in biology. One of the main problems is protein folding, which calls for precise, effective algorithms with fast computing times. Mapping the least energy conformation state of proteins with disordered areas requires enormous computing resources. The current study uses quantum algorithms, such as the Variational Quantum Eigensolver (VQE), to estimate the lowest energy value of 50 peptides, each consisting of seven amino acids. To determine the ground state energy value, Variational Quantum Optimisation (VQE) is first utilised to generate the energy values along with Conditional Value at Risk (CVaR) as an aggregation function is applied over 100 iterations of 500,000 shots each. This is contrasted with 50 millisecond molecular dynamics-based simulations to determine the energy levels and folding pattern. In comparison to MD-based simulations, the results point to CvaR-VQE producing more effective folding outcomes with respect to sampling and global optimization. Protein folding can be solved to get deep insights into biological processes and drug formulation with improving quantum technology and algorithms.


Asunto(s)
Algoritmos , Simulación de Dinámica Molecular , Péptidos , Pliegue de Proteína , Teoría Cuántica , Péptidos/química , Termodinámica , Conformación Proteica
5.
J Biomol Struct Dyn ; : 1-16, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895953

RESUMEN

Mycobacterium tuberculosis (Mtb) is a notorious pathogen that causes one of the highest mortalities globally. Due to a pressing demand to identify novel therapeutic alternatives, the present study aims to focus on screening the putative drug targets and prioritizing their role in antibacterial drug development. The most vital proteins involved in the Biotin biosynthesis pathway and the Lipoarabinomannan (LAM) pathway such as biotin synthase (bioB) and alpha-(1->6)-mannopyranosyltransferase A (mptA) respectively, along with other essential virulence proteins of Mtb were selected as drug targets. Among these, the ones without native structures were modelled and validated using standard bioinformatics tools. Further, the interactions were performed with naturally available lead molecules present in selected mushroom species such as Agaricus bisporus, Pleurotus djamor, Hypsizygus ulmarius. Through Gas Chromatography-Mass Spectrometry (GC-MS), 15 bioactive compounds from the methanolic extract of mushrooms were identified. Further, 4 were selected based on drug-likeness and pharmacokinetic screening for molecular docking analysis against our prioritized targets wherein Benz[e]azulene from Pleurotus djamor illustrated a good binding affinity with a LF rank score of -9.036 kcal mol -1 against nuoM (NADH quinone oxidoreductase subunit M) and could be used as a prospective candidate in order to combat Tuberculosis (TB). Furthermore, the stability of the complex are validated using MD Simulations and subsequently, the binding free energy was calculated using MM-GBSA analysis. Thus, the current in silico analysis suggests a promising role of compounds extracted from mushrooms in tackling the TB burden.Communicated by Ramaswamy H. Sarma.

6.
Neurosci Lett ; 832: 137792, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38677540

RESUMEN

MicroRNAs (miRNAs) have emerged as critical regulators of post-transcriptional gene expression, impacting various biological processes (development, differentiation, and progression). In medicine, miRNAs are promising diagnostic biomarkers for neurodegenerative diseases, including Parkinson's disease (PD). The current study aims at exploring the role of miRNAs and transcription factors (TFs) in regulating genes-associated with PD. Deploying bioinformatics tools, the study identifies specific miRNAs and TFs involved in PD and their potential connections to the organ-disease junction. Notably, certain miRNAs are found to be highly expressed in brain, than compared to blood. Furthermore, the study explores the expression patterns of PD-related genes in different regions of the brain and attempts to construct complex network of interactions contributing to PD pathogenesis. Additionally, the regulatory relationship of two miRNAs namely hsa-miR-375-3p and hsa-miR-423-3p with TFs are well examined. Overall, the study provides a comprehensive moon-shot view of the molecular aspects of PD and their potential therapeutic targets which could be further used as diagnostic biomarkers in early detection, drug design and development attributing towards precision medicine.


Asunto(s)
MicroARNs , Enfermedad de Parkinson , Factores de Transcripción , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Redes Reguladoras de Genes , Biomarcadores/metabolismo , Encéfalo/metabolismo , Regulación de la Expresión Génica , Biología Computacional/métodos
7.
Curr Genomics ; 25(1): 41-64, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38544823

RESUMEN

Introduction: Colorectal cancers are the world's third most commonly diagnosed type of cancer. Currently, there are several diagnostic and treatment options to combat it. However, a delay in detection of the disease is life-threatening. Additionally, a thorough analysis of the exomes of cancers reveals potential variation data that can be used for early disease prognosis. Methods: By utilizing a comprehensive computational investigation, the present study aimed to reveal mutations that could potentially predispose to colorectal cancer. Ten colorectal cancer exomes were retrieved. Quality control assessments were performed using FastQC and MultiQC, gapped alignment to the human reference genome (hg19) using Bowtie2 and calling the germline variants using Haplotype caller in the GATK pipeline. The variants were filtered and annotated using SIFT and PolyPhen2 successfully categorized the mutations into synonymous, non-synonymous, start loss and stop gain mutations as well as marked them as possibly damaging, probably damaging and benign. This mutational profile helped in shortlisting frequently occurring mutations and associated genes, for which the downstream multi-dimensional expression analyses were carried out. Results: Our work involved prioritizing the non-synonymous, deleterious SNPs since these polymorphisms bring about a functional alteration to the phenotype. The top variations associated with their genes with the highest frequency of occurrence included LGALS8, CTSB, RAD17, CPNE1, OPRM1, SEMA4D, MUC4, PDE4DIP, ELN and ADRA1A. An in-depth multi-dimensional downstream analysis of all these genes in terms of gene expression profiling and analysis and differential gene expression with regard to various cancer types revealed CTSB and CPNE1 as highly expressed and overregulated genes in colorectal cancer. Conclusion: Our work provides insights into the various alterations that might possibly lead to colorectal cancer and suggests the possibility of utilizing the most important genes identified for wet-lab experimentation.

8.
J Mol Model ; 30(3): 61, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321243

RESUMEN

CONTEXT: Amyloid fibrils are self-assembled fibrous protein aggregates that are associated with several presently incurable diseases such as Alzheimer's. disease that is characterized by the accumulation of amyloid fibrils in the brain, which leads to the formation of plaques and the death of brain cells. Disaggregation of amyloid fibrils is considered a promising approach to cure Alzheimer's disease. The mechanism of amyloid fibril formation is complex and not fully understood, making it difficult to develop drugs that can target the process. Diacetonamine and cystathionine are potential lead compounds to induce disaggregation of amyloid fibrils. METHODS: In the current research, we have used long timescale molecular simulation studies and replica exchange molecular dynamics (REMD) for 1000 ns (1 µs) to examine the mechanisms by which natural metabolites can disaggregate amyloid-beta fibrils. Molecular docking was carried out using Glide and with prior protein minimization and ligand preparation. We focused on a screening a database of natural metabolites, as potential candidates for disaggregating amyloid fibrils. We used Desmond with OPLS 3e as a force field. MM-GBSA calculations were performed. Blood-brain barrier permeability, SASA, and radius of gyration parameters were calculated.


Asunto(s)
Enfermedad de Alzheimer , Amiloide , Humanos , Amiloide/metabolismo , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo
9.
Comput Biol Chem ; 108: 107979, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37989072

RESUMEN

With increase in cancer incidences, alternative strategies for disease management are of utmost importance. Carbazole, is a compound that is being studied extensively as an anti-cancer compound. In this work, we aimed to investigate a carbazole derivative against specific cancer types such as breast and colorectal, based on the off-target analyses of carbazole derivative. The present work shortlisted 6 proteins that have an association in both cancer types, and then employed two different molecular docking strategies to examine the binding stability of carbazole derivative: a blind-docking state, where the pockets were undefined and mutation-docking state, where possible mutations were induced within the proteins. The results showed that CDK1 bound best in both states to carbazole derivative, and performed better than an array of positive controls. Molecular dynamic simulations at 100 ns further proved its stability, with carbazole derivative-CDK1-blind and mutated complex having RMSD values between 3.2 and 3.6 Å, and 2.8-3.2 Šrespectively. Molecular-mechanics generalized born and surface area solvation disclosed free energy of binding for the complexes as -28.79 ± 3.97 kcal/mol and -31.86 ± 5.09 kcal/mol respectively, with carbazole derivative bound stably within the binding pocket at every 10 ns of the 100 ns trajectory. Radial distribution functions showed that the bell curve was well within 6 Å, thus showing that carbazole derivative and its atoms do not deviate away from the pocket, suggesting its ability to be used as a good anti-cancer compound against breast and colorectal.


Asunto(s)
Neoplasias de la Mama , Carbazoles , Neoplasias Colorrectales , Simulación de Dinámica Molecular , Humanos , Carbazoles/química , Carbazoles/farmacología , Carbazoles/uso terapéutico , Proteína Quinasa CDC2/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Expresión Génica , Simulación del Acoplamiento Molecular , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética
10.
J Biomol Struct Dyn ; : 1-20, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38116745

RESUMEN

This research delves into the realm of therapeutic potential within natural compounds derived from Colchicum autumnale L., emphasizing a holistic perspective on medications used in human therapy. Rather than confining the study to their primary actions, the research endeavors to unveil molecular targets for these natural compounds, with a specific focus on their potential applicability in the treatment of rheumatoid arthritis (RA). The study focuses on understanding interactions between specific natural actives that target RA. Fifteen RA target proteins were identified from OMIM, GeneScan and PharmaGKB. Their structures were downloaded from RCSB PDB. Two active components of C. autumnale L. were chosen for mass spectrometry investigation. Ligand characteristics were determined using the ADMETlab and SwissADME software tools. Molecular docking was performed, and the top three complexes were simulated for 200 ns, along with identification of free binding energies. The compounds ß-sitosterol-IL-10 (-6.50 kcal/mol), colchicine-IL-10 (-6.01 kcal/mol), linoleic acid-IL-10 (-7.22 kcal/mol) and linoleic acid-IL-10 (-7.22 kcal/mol) exhibited best binding energies. ß-Sitosterol and colchicine showed the highest stability in simulations, confirmed by molecular mechanics free energy binding calculations. This work provides insights into the molecular interaction of natural compounds against RA targets, offering potential therapeutic anti-RA medications.Communicated by Ramaswamy H. Sarma.

11.
Mol Biotechnol ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930509

RESUMEN

Bacterial infections are evolving and one of the chief problems is emergence and prevalence of antibacterial resistance. Moreover, certain strains of Bacillus subtilis have become resistant to several antibiotics. To counteract this menace, the present work aimed to comprehend the antibacterial activity of synthesized two quinoline derivatives against Bacillus subtilis. Toxicity predictions via Protox II, SwissADME and T.E.S.T (Toxicity Estimation Software Tool) revealed that these derivatives were non-toxic and had little to no adverse effects. Molecular docking studies carried out in Schrodinger with two quinoline derivatives (referred Q1 and Q2) docked against selected target proteins (PDB IDs: 2VAM and1FSE) of B. subtilis demonstrated ideal binding energies (2VAM-Q1: - 4.63 kcal/mol and 2VAM-Q2: - 4.46 kcal/mol, and 1FSE-Q1: - 3.51 kcal/mol, 1FSE-Q2: - 6.34 kcal/mol). These complexes were simulated at 100 ns and the outcomes revealed their stability with slight conformational changes. Anti-microbial assay via disc diffusion method revealed zones of inhibition showing that B. subtilis was inhibited by both Q1 and Q2, with Q2 performing slightly better than Q1, pointing towards its effectiveness against this organism and necessitating further study on other bacteria in prospective studies. Thus, this study demonstrates that our novel quinoline derivatives exhibit antibacterial properties against Bacillus subtilis and can act as potent anti-bacterials.

12.
Bioinformation ; 19(2): 149-159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37814677

RESUMEN

We selected fifty one drugs already known for their potential disease treatment roles in various studies and subjected to docking and molecular docking simulation (MDS) analyses. Five of them showed promising features that are discussed and suggested as potential candidates for repurposing for COVID-19. These top five compounds were boswellic acid, pimecrolimus, GYY-4137, BMS-345541 and triamcinolone hexacetonide that interacted with the chosen receptors 1R42, 4G3D, 6VW1, 6VXX and 7MEQ, respectively with binding energies of -9.2 kcal/mol, -9.1 kcal/mol, -10.3 kcal/mol, -10.1 kcal/mol and -8.7 kcal/mol, respectively. The MDS studies for the top 5 best complexes revealed binding features for the chosen receptor, human NF-kappa B transcription factor as an important drug target in COVID-19-based drug development strategies.

13.
J Biomol Struct Dyn ; : 1-17, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37768136

RESUMEN

In this study, a series of thiazolidine-2,4-dione derivatives 3a-i were synthesized and evaluated for antibacterial activity against Gram-positive and Gram-negative strains of Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Newly prepared thiazolidine (TZD) derivatives were further screened separately for in vitro antifungal activity against cultures of fungal species, namely, Aspergillus niger, Alternaria brassicicola, Chaetomium murorum, Fusarium oxysporum, Lycopodium sp. and Penicillium notatum. The electron-donating substituents (-OH and -OCH3) and electron-withdrawing substituents (-Cl and -NO2) on the attached arylidene moieties of five-membered heterocyclic ring enhanced the broad spectrum of antimicrobial and antifungal activities. The molecular docking study has revealed that compound 3h strongly interacts with the catalytic residues of the active site of the ß-carbonic anhydrase (P. aeruginosa) and has the best docking score. In silico pharmacokinetics studies showed the drug-likeness and non-toxic nature of the synthesized compounds, which indicates the combined antibacterial, antiviral and antitumor pharmacophore sites of the targeted drug. This work demonstrates that potential TZD derivatives bind to different types of bacterial and fungal pathogens for circumventing their activities and opens avenues for the development of newer drug candidates that can target bacterial and fungal pathogens.Communicated by Ramaswamy H. Sarma.

14.
Mol Biotechnol ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37747672

RESUMEN

Studies have shown that transcription factor AP2A2 (activator protein-2 alpha-2) is involved in the expression of DLEC1, a tumor suppressor gene, which, when mutated, will cause breast cancer and is thus an excellent target for breast cancer studies. Therefore, in the present research, a synergistic approach toward combating breast cancer is proposed by blocking AP2A2 factor, and allowing the cancer cells to be sensitive to anti-cancer drugs. The effect of AP2A2 on breast cancer was first understood via gene analysis from cBioPortal. AP2A2 was then modeled using RaptorX and its structure was validated from Ramachandran plots. Using all ligands from MolPort database, molecular docking was performed against AP2A2, from which the top three best docked ligands were studied for toxicity in humans using Protox-II. Once the ligands passed these tests, the best complexes were simulated at 200ns in Desmond Maestro, to comprehend their stabilities, followed by the computations of free energies of binding via Molecular mechanics- Generalized Born Solvent Accessibility method (MM-GBSA). The results showed that molecules MolPort-005-945-556 (sachharolipids), MolPort-001-741-124 (flavonoids), and MolPort-005-944-667 (lignan glycosides) with AP2A2 passed toxicity evaluation and belonged to toxicity classes 6, 5, and 5, respectively, with good docking energies. 200 ns simulations revealed stable complexes with slight conformational changes. Stability of ligands was confirmed via snapshots at every 20 ns of the trajectory. Radial distribution of these molecules against the protein revealed very slight deviation from binding pocket. Additionally, the free binding energies for these complexes were found to be - 54.93 ± 12.982 kcal/mol, - 44.39 ± 14.393 kcal/mol, and - 66.51 ± 13.522 kcal/mol, respectively. A preliminary computational validation of the inability of AP2A2 to bind to DLEC1 in the presence of ligands offers beneficial insights into the potential of these ligands. Therefore, this study sheds light on the potential natural molecules that could stably block AP2A2 with least deviation and act in synergy to aid anti-cancer drugs work on breast cancer cells.

15.
Int J Biol Macromol ; 253(Pt 4): 126989, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37739292

RESUMEN

The current study aimed to design novel curcumin analogue inhibitors with antiproliferative and antitumor activity towards BRCA1 and TP53 tumor proteins and to study their therapeutic potential by computer-aided molecular designing and experimental investigations. Four curcumin analogues were computationally designed and their drug-likeness and pharmacokinetic properties were predicted. The binding of these analogues against six protein targets belonging to BRCA1 and TP53 tumor proteins were modelled by molecular docking and their binding energies were compared with that of curcumin and the standard drug cyclophosphamide and its validated target. The stabilities of selected docked complexes were confirmed by molecular dynamic simulation (MDS) and MMGBSA calculations. The best-docked analogue was chemically synthesized, characterized, and used for in vitro cytotoxic screening using DLA, EAC, and C127I cell lines. In vivo antitumor studies were carried out in Swiss Albino Mice. The study revealed that the designed analogues satisfied drug-likeness and pharmacokinetic properties and demonstrated better binding affinity to the selected targets than curcumin. Among the analogues, NLH demonstrated significant interaction with the BRCA1-BRCT-c domain (TG3; binding energy -8.3 kcal/mol) when compared to the interaction of curcumin (binding energy -6.19 kcal) and cyclophosphamide (binding energy -3.8 kcal/mol) and its usual substrate (TG7). The MDS and MM/GBSA studies revealed that the binding free energy of the NLH-TG3 complex (-61.24 kcal/mol) was better when compared to that of the cyclophosphamide-TG7 complex (-21.67 kcal/mol). In vitro, cytotoxic studies showed that NLH demonstrated significant antiproliferative activities against tumor cell lines. The in vivo study depicted NLH possesses the potential for tumor inhibition. Thus, the newly synthesized curcumin analogue is probably used to develop novel therapeutic agents against breast cancer.


Asunto(s)
Antineoplásicos , Curcumina , Animales , Ratones , Humanos , Curcumina/farmacología , Curcumina/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Ciclofosfamida , Proteína p53 Supresora de Tumor , Proteína BRCA1/genética
16.
PLoS One ; 18(8): e0288264, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37535543

RESUMEN

Coarse-grained simulations have emerged as a valuable tool in the study of large and complex biomolecular systems. These simulations, which use simplified models to represent complex biomolecules, reduce the computational cost of simulations and enable the study of larger systems for longer periods of time than traditional atomistic simulations. GROMACS is a widely used software package for performing coarse-grained simulations of biomolecules, and several force fields have been developed specifically for this purpose. In this protocol paper, we explore the advantages of using coarse-grained simulations in the study of biomolecular systems, focusing specifically on simulations performed using GROMACS. We discuss the force fields required for these simulations and the types of research questions that can be addressed using coarse-grained simulations. We also highlight the potential benefits of coarse-grained simulations for the development of new force fields and simulation methodologies. We then discuss the expected results from coarse-grained simulations using GROMACS and the various techniques that can be used to analyze these results. We explore the use of trajectory analysis tools, as well as thermodynamic and structural analysis techniques, to gain insight into the behavior of biomolecular systems.


Asunto(s)
Simulación de Dinámica Molecular , Psicoterapia , Sustancias Macromoleculares , Termodinámica
17.
J Biomol Struct Dyn ; : 1-20, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37599509

RESUMEN

A series of new heteroleptic oxovanadium(IV) complexes with the general formula [VOL1-6(Dcf)] (1-6), where L1-6 = thiosemicarbazone (TSC)-based ligands and Dcf = diclofenac have been synthesized and characterized. The spectral studies along with the density functional theory calculations evidenced the distorted square-pyramidal geometry around oxovanadium(IV) ion through imine nitrogen and thione sulfur atoms of TSC moiety, and two asymmetric carboxylate oxygen atoms of diclofenac drug. The complexes were evaluated for in vitro antioxidant activity using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2'-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2) and superoxide radical scavenging assays with respect to the standard antioxidant drugs butylated hydroxyanisole (BHA) and rutin. The in vitro antidiabetic activity of the complexes was tested with enzymes such as α-amylase, α-glucosidase and glucose-6-phosphatase. The complexes containing methyl substituent showed higher activity than that containing the nitro substituent due to the electron-donating effect of methyl group. The in silico molecular docking studies of the oxovanadium(IV) complexes with α-amylase and α-glucosidase enzymes showed strong interaction via hydrogen bonding and hydrophobic interactions. The dynamic behavior of the proposed complexes was analyzed by molecular dynamics (MDs) simulations, which revealed the stability of docked structures with α-amylase and α-glucosidase enzymes. The in silico physicochemical and pharmacokinetics parameters, such as Lipinski's 'rule of five', Veber's rule and absorption, distribution, metabolism and excretion (ADME) properties predicted non-toxic, non-carcinogenic and safe oral administration of the synthesized complexes.Communicated by Ramaswamy H. Sarma.

18.
Curr Issues Mol Biol ; 45(5): 4261-4284, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37232740

RESUMEN

The drug discovery and research for an anti-COVID-19 drug has been ongoing despite repurposed drugs in the market. Over time, these drugs were discontinued due to side effects. The search for effective drugs is still under process. The role of Machine Learning (ML) is critical in the search for novel drug compounds. In the current work, using the equivariant diffusion model, we built novel compounds targeting the spike protein of SARS-CoV-2. Using the ML models, 196 de novo compounds were generated which had no hits on any major chemical databases. These novel compounds fulfilled all the criteria of ADMET properties to be lead-like and drug-like compounds. Of the 196 compounds, 15 were docked with high confidence in the target. These compounds were further subjected to molecular docking, the best compound having an IUPAC name of (4aS,4bR,8aS,8bS)-4a,8a-dimethylbiphenylene-1,4,5,8(4aH,4bH,8aH,8bH)-tetraone and a binding score of -6.930 kcal/mol. The principal compound is labeled as CoECG-M1. Density Function Theory (DFT) and Quantum optimization was carried out along with the study of ADMET properties. This suggests that the compound has potential drug-like properties. The docked complex was further subjected to MD simulations, GBSA, and metadynamics simulations to gain insights into the stability of binding. The model can be in the future modified to improve the positive docking rate.

19.
Anticancer Agents Med Chem ; 23(15): 1783-1793, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37151057

RESUMEN

INTRODUCTION: Breast cancer is the most frequent malignancy in women with more than one in ten new cancer diagnoses each year. Synthetic products are a key source for the identification of new anticancer medicines and drug leads. OBJECTIVES: Imidazopyrazine is a highly favored skeleton for the design of new anticancer drugs. In silico designed derivatives were screened using computer aided drug design techniques and validated using MTT assay. METHODS: A template-based methodology was used in the current work to create novel Imidazopyrazine derivatives, targeting the NPY1R protein. Molecular docking, Diffusion docking, MD simulation, MM-GBSA and meta-dynamics techniques were followed. MTT assay was performed to validate the activity of principal compound. RESULTS: A docking score of -6.660 and MMGBSA value of -108.008 (+/-) 9.14 kcal/mol was obtained from the investigations conducted. In addition, molecular dynamics simulation was carried out for 500 ns, yielding a stable RMSD and value of 5.6 Å, thus providing insights on the stability of the protein conformation on interaction with the principal compound. Furthermore, the in vivo validation studies conducted via MTT assay showed an IC50 value of 73.45 (+/-) 0.45 µg /mL. CONCLUSION: The research has produced encouraging findings and can be applied as a model for precise enumerations in the future. It also encourages the study of novel synthetic compounds with potential anti-cancer properties.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Femenino , Humanos , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-Actividad , Receptores de Neuropéptido Y/antagonistas & inhibidores , Imidazoles/química , Imidazoles/farmacología , Pirazinas/química , Pirazinas/farmacología
20.
Microorganisms ; 11(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37110343

RESUMEN

Effectors play an important role in host-pathogen interactions. Though an economically significant disease in rice, knowledge regarding the infection strategy of Rhizoctonia solani is obscure. In this study, we performed a genome-wide identification of the effectors in R. solani based on the characteristics of previously reported effector proteins. A total of seven novel effectors (designated as RS107_1 to RS107_7) in the disease mechanism of R. solani were identified and were predicted to be non-classically secreted proteins with functionally conserved domains. The function, reactivity, and stability of these proteins were evaluated through physiochemical characterization. The target proteins involved in the regulation of rice defense mechanisms were identified. Furthermore, the effector genes were cloned and RS107_6 (metacaspase) was heterologously expressed in Escherichia coli to obtain a purified protein of ~36.5 kDa. The MALD-TOF characterization confirmed that the protein belonged to a metacaspase of the Peptidase_C14 protein family, 906 bp in size, and encoded a polypeptide of 301 amino acids. These findings suggest that the identified effectors can potentially serve as a virulence factor and can be targeted for the management of sheath blight in rice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...