Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
RSC Med Chem ; 14(12): 2438-2458, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38107171

RESUMEN

One of the world's serious health challenges is cancer. Anti-cancer agents delivered to normal cells and tissues pose several problems and challenges. In this connection, photodynamic therapy (PDT) is a minimally invasive therapeutic technique used for selectively destroying malignant cells while sparing the normal tissues. Development in photosensitisers (PSs) and light sources have to be made for PDT as a first option treatment for patients. In the pursuit of developing new attractive molecules and their formulations for PDT, researchers are working on developing such type of PSs that perform better than those being currently used. For the widespread clinical utilization of PDT, effective PSs are of particular importance. Host-guest interactions based on nanographene assemblies such as functionalized hexa-cata-hexabenzocoronenes, hexa-peri-hexabenzocoronenes and coronene have attracted increasing attention owing to less complicated synthetic steps and purification processes (gel permeation chromatography) during fabrication. Noncovalent interactions provide easy and facile approaches for building supramolecular PSs and enable them to have sensitive and controllable photoactivities, which are important for maximizing photodynamic effects and minimizing side effects. Various versatile supramolecular assemblies based on cyclodextrins, cucurbiturils, calixarenes, porphyrins and pillararenes have been designed in order to make PDT an effective therapeutic technique for curing cancer and tumours. The supramolecular assemblies of porphyrins display efficient electron transfer and fluorescence for use in bioimaging and PDT. The multifunctionalization of supramolecular assemblies is used for designing biomedically active PSs, which are helpful in PDT. It is anticipated that the development of these functionalized supramolecular assemblies will provide more fascinating advances in PDT and will dramatically expand the potential and possibilities in cancer treatments.

2.
Inorg Chem ; 59(22): 16168-16177, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33103424

RESUMEN

Superbenzene porphyrin conjugates find wide range of applications from nonlinear optical materials to semiconductors. Herein, we report the synthesis and characterization of 5,15-bis(3,5-di-tert-butylphenyl)-10,20-bis(pentaphenylphenyl)phenylporphyrin and its Zinc-metallated complex. Oxidative planarization of 5,15-bis(3,5-di-tert-butylphenyl)-10,20-bis(pentaphenylphenyl)phenylporphyrin and its metallated complex was carried out by using NOBF4 as an oxidizing agent. The formation of superbenzene porphyrin conjugates validates its Scholl type reactions. The laboratory-synthesized porphyrin conjugates were characterized experimentally using spectroscopic techniques such as 1H NMR, 13C NMR, electron spin resonance, and ultraviolet-visible spectroscopy for structural conformation. In addition, density functional theory calculations were carried out to validate the experimental results. The theoretical and experimental results show that the 4-(pentaphenylphenyl)phenyl ligand increases the stability, optical properties, and rate of planarization of synthesized porphyrins. The conjugates exhibited intense and distant electronic communication between two hexabenzocoronene sites, taking advantage of porphyrin as a π-spacer. The π-radical cation has also been found to be an intermediate in oxidative C-C bond formation. NICS calculations support such a conclusion.

3.
Curr Org Synth ; 16(1): 154-159, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31965929

RESUMEN

BACKGROUND: Quinolines represent an important class of bioactive molecules which are present in various synthetic drugs, biologically active natural compounds and pharmaceuticals. Quinolines find their potential applications in various chemical and biomedical fields. Thereby, the demand for more efficient and simple methodologies for the synthesis of quinolines is growing rapidly. OBJECTIVE: The green one-pot Friedlander Synthesis of Functionalized Quinolines has been demonstrated by using graphene oxide as a carbocatalyst. METHOD: The graphene oxide catalyzed condensation reaction of 2-aminoaryl carbonyl compounds with different cyclic/ acyclic/ aromatic carbonyl compounds in methanol at 70°C affords different quinoline derivatives. RESULTS: The reaction has been examined in different protic and aprotic solvents and the best yield of quinoline is observed in methanol at 70°C. CONCLUSION: The present method of quinoline synthesis offers various advantages over other reported methods such as short reaction time, high yield of product, recycling of catalyst and simple separation procedure. The graphene oxide carbocatalyst can be easily recovered from the reaction mixture by centrifugation and then can be reused several times without any significant loss in its activity.

4.
Inorg Chem ; 57(18): 11333-11340, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30188706

RESUMEN

The synthesis of selenium and tellurium core-modified carbaporphyrinogens was carried out by the reaction of functional selenophene/tellurophene diols with azulene or a benzitripyrrane in the presence of acid. The products were obtained in moderate yields and were characterized by using 1H and 13C NMR, UV-vis, FT-IR, CV, and HRMS spectroscopic techniques. Further, oxidation of the obtained core-modified carbaporphyrinogens in the presence of DDQ in CHCl3 afforded the corresponding carbaporphyrins in good yields. Benziporphyrins showed no indication of a ring current or macrocyclic aromaticity as confirmed by using proton NMR spectroscopy, but the addition of TFA gave rise to the formation of weakly diatropic dications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA