Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805221

RESUMEN

Heme, an organometallic tetrapyrrole, is widely engaged in oxygen transport, electron delivery, enzymatic reactions, and signal transduction. In plants, it is also involved in photomorphogenesis and photosynthesis. HEME OXYGENASE 1 (HO1) initiates the first committed step in heme catabolism, and it has generally been thought that this reaction takes place in chloroplasts. Here, we show that HO1 in both Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) has two transcription start sites (TSSs), producing long (HO1L) and short (HO1S) transcripts. Their products localize to the chloroplast and the cytosol, respectively. During early development or de-etiolation, the HO1L/HO1S ratio gradually increases. Light perception via phytochromes and cryptochromes elevates the HO1L/HO1S ratio in the whole seedling through the functions of ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG (HYH) and through the suppression of DE-ETIOLATED 1 (DET1), CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), and PHYTOCHROME INTERACTING FACTORs (PIFs). HO1L introduction complements the HO1-deficient mutant; surprisingly, HO1S expression also restores the short hypocotyl phenotype and high pigment content and helps the mutant recover from the genomes uncoupled (gun) phenotype. This indicates the assembly of functional phytochromes within these lines. Furthermore, our findings support the hypothesis that a mobile heme signal is involved in retrograde signaling from the chloroplast. Altogether, our work clarifies the molecular mechanism of HO1 TSS regulation and highlights the presence of a cytosolic bypass for heme catabolism in plant cells.

2.
Biomed Res ; 45(2): 57-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556263

RESUMEN

Although patients with chronic kidney disease (CKD) have a higher risk of colorectal cancer (CRC) aggravation, the connection between these two diseases is not well understood. Recent studies have shown that both CKD and CRC aggravation are closely related to an increased abundance of indole-producing Fusobacterium nucleatum in the gut. The indole absorbed from the gut is eventually metabolized to indoxyl sulfate in the liver. Since indoxyl sulfate is involved not only in accelerating CKD progression but also in the initiation and development of its associated complications, the present study aimed to clarify whether indoxyl sulfate induces the proliferation of CRC cells. This study found that indoxyl sulfate induced the proliferation of CRC-derived HCT-116 cells by activating the aryl hydrocarbon receptor (AhR) and the proto-oncogene Akt. The AhR antagonist CH223191 and Akt inhibitor MK2206 suppressed indoxyl sulfate-induced proliferation of HCT-116 cells. We also found that indoxyl sulfate upregulated epidermal growth factor receptor (EGFR) expression, which is associated with poor prognosis of CRC, whereas CH223191 and MK2206 repressed EGFR expression. Furthermore, indoxyl sulfate increased the sensitivity of CRC cells to EGF by upregulating EGFR expression. These findings suggest that indoxyl sulfate may be an important link between CKD and CRC aggravation.


Asunto(s)
Compuestos Azo , Neoplasias Colorrectales , Pirazoles , Insuficiencia Renal Crónica , Humanos , Indicán/farmacología , Indicán/metabolismo , Proteínas Proto-Oncogénicas c-akt , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Receptores ErbB/genética , Indoles , Proliferación Celular
3.
Front Plant Sci ; 15: 1304366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318497

RESUMEN

We have previously reported a wide variation in salt tolerance among Arabidopsis thaliana accessions and identified ACQOS, encoding a nucleotide-binding leucine-rich repeat (NLR) protein, as the causal gene responsible for the disturbance of acquired osmotolerance induced after mild salt stress. ACQOS is conserved among Arabidopsis osmosensitive accessions, including Col-0. In response to osmotic stress, it induces detrimental autoimmunity, resulting in suppression of osmotolerance, but how ACQOS triggers autoimmunity remains unclear. Here, we screened acquired osmotolerance (aot) mutants from EMS-mutagenized Col-0 seeds and isolated the aot19 mutant. In comparison with the wild type (WT), this mutant had acquired osmotolerance and decreased expression levels of pathogenesis-related genes. It had a mutation in a splicing acceptor site in NUCLEOPORIN 85 (NUP85), which encodes a component of the nuclear pore complex. A mutant with a T-DNA insertion in NUP85 acquired osmotolerance similar to aot19. The WT gene complemented the osmotolerant phenotype of aot19. We evaluated the acquired osmotolerance of five nup mutants of outer-ring NUPs and found that nup96, nup107, and aot19/nup85, but not nup43 or nup133, showed acquired osmotolerance. We examined the subcellular localization of the GFP-ACQOS protein and found that its nuclear translocation in response to osmotic stress was suppressed in aot19. We suggest that NUP85 is essential for the nuclear translocation of ACQOS, and the loss-of-function mutation of NUP85 results in acquired osmotolerance by suppressing ACQOS-induced autoimmunity in response to osmotic stress.

4.
Plant Physiol ; 194(2): 1166-1180, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37878763

RESUMEN

Calcium (Ca2+) is a major ion in living organisms, where it acts as a second messenger for various biological phenomena. The Golgi apparatus retains a higher Ca2+ concentration than the cytosol and returns cytosolic Ca2+ to basal levels after transient elevation in response to environmental stimuli such as osmotic stress. However, the Ca2+ transporters localized in the Golgi apparatus of plants have not been clarified. We previously found that a wild-type (WT) salt-tolerant Arabidopsis (Arabidopsis thaliana) accession, Bu-5, showed osmotic tolerance after salt acclimatization, whereas the Col-0 WT did not. Here, we isolated a Bu-5 background mutant gene, acquired osmotolerance-defective 6 (aod6), which reduces tolerance to osmotic, salt, and oxidative stresses, with a smaller plant size than the WT. The causal gene of the aod6 mutant encodes CATION CALCIUM EXCHANGER4 (CCX4). The aod6 mutant was more sensitive than the WT to both deficient and excessive Ca2+. In addition, aod6 accumulated higher Ca2+ than the WT in the shoots, suggesting that Ca2+ homeostasis is disturbed in aod6. CCX4 expression suppressed the Ca2+ hypersensitivity of the csg2 (calcium sensitive growth 2) yeast (Saccharomyces cerevisiae) mutant under excess CaCl2 conditions. We also found that aod6 enhanced MAP kinase 3/6 (MPK3/6)-mediated immune responses under osmotic stress. Subcellular localization analysis of mGFP-CCX4 showed GFP signals adjacent to the trans-Golgi apparatus network and co-localization with Golgi apparatus-localized markers, suggesting that CCX4 localizes in the Golgi apparatus. These results suggest that CCX4 is a Golgi apparatus-localized transporter involved in the Ca2+ response and plays important roles in osmotic tolerance, shoot Ca2+ content, and normal growth of Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Calcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aparato de Golgi/metabolismo , Red trans-Golgi/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
Life (Basel) ; 13(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37629561

RESUMEN

Obesity has received increasing attention in recent years because it is a factor in the development of non-communicable diseases. The current study aimed to analyze how representative fatty acids (FAs) such as palmitic acid, stearic acid, oleic acid, α-linolenic acid (ALA), and eicosapentaenoic acid (EPA) affected adipogenesis when/if introduced at the differentiation stage of 3T3-L1 cell culture. These FAs are assumed to be potentially relevant to the progression or prevention of obesity. EPA added during the differentiation stage reduced intracellular triacylglycerol (TAG) accumulation, as well as the expression of the established adipocyte-specific marker genes, during the maturation stage. However, no other FAs inhibited intracellular TAG accumulation. Coexistence of Δ12-prostaglandin J2, a peroxisome proliferator-activated receptor γ activator, with EPA during the differentiation stage partially attenuated the inhibitory effect of EPA on intracellular TAG accumulation. EPA increased cyclooxygenase-2 (COX-2) expression and protein kinase A (PKA) activity at the differentiation stage, which could explain the inhibitory actions of EPA. Taken together, exposure of preadipocytes to EPA only during the differentiation stage may be sufficient to finally reduce the mass of white adipose tissue through increasing COX-2 expression and PKA activity.

6.
Life (Basel) ; 13(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36836723

RESUMEN

A linoleic acid (LA) metabolite arachidonic acid (AA) added to 3T3-L1 cells is reported to suppress adipogenesis. The purpose of the present study aimed to clarify the effects of AA added during the differentiation phase, including adipogenesis, the types of prostaglandins (PG)s produced, and the crosstalk between AA and the PGs produced. Adipogenesis was inhibited by AA added, while LA did not. When AA was added, increased PGE2 and PGF2α production, unchanged Δ12-PGJ2 production, and reduced PGI2 production were observed. Since the decreased PGI2 production was reflected in decreased CCAAT/enhancer-binding protein-ß (C/EBPß) and C/EBPδ expression, we expected that the coexistence of PGI2 with AA would suppress the anti-adipogenic effects of AA. However, the coexistence of PGI2 with AA did not attenuate the anti-adipogenic effects of AA. In addition, the results were similar when Δ12-PGJ2 coexisted with AA. Taken together, these results indicated that the metabolism of ingested LA to AA is necessary to inhibit adipogenesis and that exposure of AA to adipocytes during only the differentiation phase is sufficient. As further mechanisms for suppressing adipogenesis, AA was found not only to increase PGE2 and PGF2α and decrease PGI2 production but also to abrogate the pro-adipogenic effects of PGI2 and Δ12-PGJ2.

7.
Life (Basel) ; 13(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36836727

RESUMEN

We previously reported that the addition of prostaglandin, (PG)D2, and its chemically stable analog, 11-deoxy-11-methylene-PGD2 (11d-11m-PGD2), during the maturation phase of 3T3-L1 cells promotes adipogenesis. In the present study, we aimed to elucidate the effects of the addition of PGD2 or 11d-11m-PGD2 to 3T3-L1 cells during the differentiation phase on adipogenesis. We found that both PGD2 and 11d-11m-PGD2 suppressed adipogenesis through the downregulation of peroxisome proliferator-activated receptor gamma (PPARγ) expression. However, the latter suppressed adipogenesis more potently than PGD2, most likely because of its higher resistance to spontaneous transformation into PGJ2 derivatives. In addition, this anti-adipogenic effect was attenuated by the coexistence of an IP receptor agonist, suggesting that the effect depends on the intensity of the signaling from the IP receptor. The D-prostanoid receptors 1 (DP1) and 2 (DP2, also known as a chemoattractant receptor-homologous molecule expressed on Th2 cells) are receptors for PGD2. The inhibitory effects of PGD2 and 11d-11m-PGD2 on adipogenesis were slightly attenuated by a DP2 agonist. Furthermore, the addition of PGD2 and 11d-11m-PGD2 during the differentiation phase reduced the DP1 and DP2 expression during the maturation phase. Overall, these results indicated that the addition of PGD2 or 11d-11m-PGD2 during the differentiation phase suppresses adipogenesis via the dysfunction of DP1 and DP2. Therefore, unidentified receptor(s) for both molecules may be involved in the suppression of adipogenesis.

8.
Planta ; 257(4): 64, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36811672

RESUMEN

MAIN CONCLUSION: Targeted expression of bgl23-D, a dominant-negative allele of ATCSLD5, is a useful genetic approach for functional analysis of ATCSLDs in specific cells and tissues in plants. Stomata are key cellular structures for gas and water exchange in plants and their development is influenced by several genes. We found the A. thaliana bagel23-D (bgl23-D) mutant showing abnormal bagel-shaped single guard cells. The bgl23-D was a novel dominant mutation in the A. thaliana cellulose synthase-like D5 (ATCSLD5) gene that was reported to function in the division of guard mother cells. The dominant character of bgl23-D was used to inhibit ATCSLD5 function in specific cells and tissues. Transgenic A. thaliana expressing bgl23-D cDNA with the promoter of stomata lineage genes, SDD1, MUTE, and FAMA, showed bagel-shaped stomata as observed in the bgl23-D mutant. Especially, the FAMA promoter exhibited a higher frequency of bagel-shaped stomata with severe cytokinesis defects. Expression of bgl23-D cDNA in the tapetum with SP11 promoter or in the anther with ATSP146 promoter induced defects in exine pattern and pollen shape, novel phenotypes that were not shown in the bgl23-D mutant. These results indicated that bgl23-D inhibited unknown ATCSLD(s) that exert the function of exine formation in the tapetum. Furthermore, transgenic A. thaliana expressing bgl23-D cDNA with SDD1, MUTE, and FAMA promoters showed enhanced rosette diameter and increased leaf growth. Taken together, these findings suggest that the bgl23-D mutation could be a helpful genetic tool for functional analysis of ATCSLDs and manipulating plant growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Citocinesis , Alelos , ADN Complementario , Proteínas de Arabidopsis/metabolismo , Polen/genética , Células Madre/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Biosci Biotechnol Biochem ; 86(5): 628-634, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35266506

RESUMEN

We previously reported that prostaglandin (PG)D2 and its isosteric analog, 11-deoxy-11-methylene-PGD2 (11d-11m-PGD2), promote adipogenesis in 3T3-L1 cells during the maturation phase. Focusing on the differentiation phase, although both PGs inhibited adipogenesis, this effect was canceled out by PGI2 and PGJ2 derivatives. Thus, PGD2 and 11d-11m-PGD2 play different roles during the phases, but do not affect PGI2- and PGJ2-derivative-induced adipogenesis.


Asunto(s)
Adipogénesis , Prostaglandina D2 , Células 3T3-L1 , Animales , Diferenciación Celular , Ratones , Prostaglandina D2/farmacología
10.
Biosci Biotechnol Biochem ; 85(9): 2011-2021, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34245564

RESUMEN

Most studies of indole derivatives such as IAA produced by intestinal microbiota have been based on the premise that binding to AhR leads to biological responses. We previously revealed that IAA binds to more than one receptor, and thus the present study aimed to identify a new receptor for IAA and analyze its mechanism of action. We found that the TLR4 antagonist TAK-242 did not affect the IAA-induced increase in CYP1A1 expression at 3 h and decreased TNFα expression at 8 days. However, TAK-242 alleviated decreased TNFα expression induced by IAA at 2 days and promoted IAA-induced increased CYP1A1 expression by inhibiting JNK activation at 8 days. Taken together, TLR4 may be a novel IAA receptor with signaling pathways that regulate CYP1A1 and TNFα expression depending on the culture stage of Caco-2 cells. Furthermore, our findings offer important clues for elucidating the action mechanisms of indole derivatives that affect hosts.


Asunto(s)
Citocromo P-450 CYP1A1/metabolismo , Ácidos Indolacéticos/metabolismo , Receptor Toll-Like 4/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Células CACO-2 , Activación Enzimática , Humanos , MAP Quinasa Quinasa 4/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo
11.
NPJ Aging Mech Dis ; 7(1): 12, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099724

RESUMEN

To assess the utility of autofluorescence as a noninvasive biomarker of senescence in Caenorhabditis elegans, we measured the autofluorescence of individual nematodes using spectrofluorometry. The fluorescence of each worm increased with age. Animals with lower fluorescence intensity exhibited longer life expectancy. When proteins extracted from worms were incubated with sugars, the fluorescence intensity and the concentration of advanced glycation end products (AGEs) increased over time. Ribose enhanced these changes not only in vitro but also in vivo. The glycation blocker rifampicin suppressed this rise in fluorescence. High-resolution mass spectrometry revealed that vitellogenins accumulated in old worms, and glycated vitellogenins emitted six-fold higher fluorescence than naive vitellogenins. The increase in fluorescence with ageing originates from glycated substances, and therefore could serve as a useful noninvasive biomarker of AGEs. C. elegans can serve as a new model to look for anti-AGE factors and to study the relationship between AGEs and senescence.

12.
Biosci Biotechnol Biochem ; 85(4): 902-906, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33580679

RESUMEN

Indole-3-acetic acid (IAA) produced by intestinal bacteria from tryptophan in dietary proteins is considered to suppress the inflammatory response through aryl hydrocarbon receptor (AhR) activation. However, AhR activation was not involved in the downregulation of tumor necrosis factor α (TNFα) expression induced by IAA in Caco-2 cells. The activation of unidentified IAA receptors might attenuate the inflammatory response to TNFα in colorectal cancer cells.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Factor de Necrosis Tumoral alfa/genética , Células CACO-2 , Humanos , Inflamación/genética
13.
Proc Natl Acad Sci U S A ; 117(40): 25150-25158, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32968023

RESUMEN

The plasma membrane (PM) acts as the interface between intra- and extracellular environments and exhibits a tightly regulated molecular composition. The composition and amount of PM proteins are regulated by balancing endocytic and exocytic trafficking in a cargo-specific manner, according to the demands of specific cellular states and developmental processes. In plant cells, retrieval of membrane proteins from the PM depends largely on clathrin-mediated endocytosis (CME). However, the mechanisms for sorting PM proteins during CME remain ambiguous. In this study, we identified a homologous pair of ANTH domain-containing proteins, PICALM1a and PICALM1b, as adaptor proteins for CME of the secretory vesicle-associated longin-type R-SNARE VAMP72 group. PICALM1 interacted with the SNARE domain of VAMP72 and clathrin at the PM. The loss of function of PICALM1 resulted in faulty retrieval of VAMP72, whereas general endocytosis was not considerably affected by this mutation. The double mutant of PICALM1 exhibited impaired vegetative development, indicating the requirement of VAMP72 recycling for normal plant growth. In the mammalian system, VAMP7, which is homologous to plant VAMP72, is retrieved from the PM via the interaction with a clathrin adaptor HIV Rev-binding protein in the longin domain during CME, which is not functional in the plant system, whereas retrieval of brevin-type R-SNARE members is dependent on a PICALM1 homolog. These results indicate that ANTH domain-containing proteins have evolved to be recruited distinctly for recycling R-SNARE proteins and are critical to eukaryote physiology.


Asunto(s)
Endocitosis/genética , Proteínas de la Membrana/genética , Transporte de Proteínas/genética , Proteínas R-SNARE/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/genética , Clatrina/metabolismo , Eucariontes/genética , Exocitosis/genética , Regulación de la Expresión Génica de las Plantas/genética , Células Vegetales/metabolismo , Dominios Proteicos/genética
14.
Plant Signal Behav ; 15(11): 1802553, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752971

RESUMEN

Acute and chronic arsenic (As) toxicity is a global health issue affecting millions of people, which leads to inactivation of over 200 enzymes, particularly those involved in cellular energy pathways and DNA synthesis and repair. The fern Pteris vittata acts as a hyperaccumulator of As and may be useful for phytoremediation to reduce disposal risks by utilizing metal-enriched plant biomass in energy and metal recovery. However, these ferns grow in limited environments and its transplantation and transport can be challenging. Therefore, we generated a transgenic Arabidopsis plant as a seed plant model, capable of accumulating As in their vacuole lumen. This was achieved by transforming the As-resistant bacterial As transporter, ArsB, via fusion with a organelle-targeting signal to the vacuolar membrane, N-ethyl-maleimide-sensitive factor attachment protein receptors (SNAREs) protein, VAMP711. In this study, we developed the iVenus assay as a method for detecting whether the N- or C-terminus of a membrane protein is located on the cytoplasmic or exoplasmic side, and from the result of the iVenus assay, we generated the transgenic plant introduced N-terminal end of ArsB with VAMP711, localized to the central vacuolar membrane to accumulate As in the shoot and differentiation zone of root.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arsénico/metabolismo , Biodegradación Ambiental , Proteínas SNARE/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Pteris/genética , Pteris/metabolismo , Proteínas SNARE/genética , Vacuolas/metabolismo
15.
J Exp Bot ; 71(6): 2085-2097, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-31844896

RESUMEN

The genome of Arabidopsis encodes more than 60 mitogen-activated protein kinase kinase (MAPKK) kinases (MAPKKKs); however, the functions of most MAPKKKs and their downstream MAPKKs are largely unknown. Here, MAPKKK δ-1 (MKD1), a novel Raf-like MAPKKK, was isolated from Arabidopsis as a subunit of a complex including the transcription factor AtNFXL1, which is involved in the trichothecene phytotoxin response and in disease resistance against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (PstDC3000). A MKD1-dependent cascade positively regulates disease resistance against PstDC3000 and the trichothecene mycotoxin-producing fungal pathogen Fusarium sporotrichioides. MKD1 expression was induced by trichothecenes derived from Fusarium species. MKD1 directly interacted with MKK1 and MKK5 in vivo, and phosphorylated MKK1 and MKK5 in vitro. Correspondingly, mkk1 mutants and MKK5RNAi transgenic plants showed enhanced susceptibility to F. sporotrichioides. MKD1 was required for full activation of two MAPKs (MPK3 and MPK6) by the T-2 toxin and flg22. Finally, quantitative phosphoproteomics suggested that an MKD1-dependent cascade controlled phosphorylation of a disease resistance protein, SUMO, and a mycotoxin-detoxifying enzyme. Our findings suggest that the MKD1-MKK1/MKK5-MPK3/MPK6-dependent signaling cascade is involved in the full immune responses against both bacterial and fungal infection.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Quinasas de Proteína Quinasa Activadas por Mitógenos , Micosis , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fusarium , Regulación de la Expresión Génica de las Plantas , Quinasas Quinasa Quinasa PAM , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
16.
Biosci Biotechnol Biochem ; 84(1): 154-158, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31794328

RESUMEN

Malectin is a maltose-binding endoplasmic reticulum protein conserved in animals. In Arabidopsis thaliana, we identified four genes that encode malectin-like domain (MLD)- and leucine-rich repeat (LRR)-containing proteins (AtMLLRs): two were receptor-like proteins (AtMLLR1 and 2) and the other two were extracellular proteins (AtMLLR3 and 4). The promoter:G3GFP+promoter:GUS assay indicated the organ- and cell-specific expression of the AtMLLR2 and AtMLLR3 genes.Abbreviations: Cmr: chloramphenicol-resistance marker; G3GFP: G3 green fluorescent protein; GUS: ß-glucuronidase; KD: kinase domain; LRR: leucine-rich repeat; MLD: malectin-like domain; RLK: receptor-like kinase; SP: signal peptide; TMD: transmembrane domain; Tnos: nopaline synthase terminator.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Expresión Génica , Lectinas/genética , Proteínas de la Membrana/genética , Proteínas/genética , Retículo Endoplásmico/metabolismo , Glucuronidasa/química , Proteínas Fluorescentes Verdes/química , Leucina/genética , Proteínas Repetidas Ricas en Leucina , Microscopía Fluorescente , Filogenia , Plantas Modificadas Genéticamente , Dominios Proteicos/genética , Coloración y Etiquetado
17.
Plant J ; 102(1): 129-137, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31755157

RESUMEN

Bundle Sheath Defective 2, BSD2, is a stroma-targeted protein initially identified as a factor required for the biogenesis of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) in maize. Plants and algae universally have a homologous gene for BSD2 and its deficiency causes a RuBisCO-less phenotype. As RuBisCO can be the rate-limiting step in CO2 assimilation, the overexpression of BSD2 might improve photosynthesis and productivity through the accumulation of RuBisCO. To examine this hypothesis, we produced BSD2 overexpression lines in Arabidopsis. Compared with wild type, the BSD2 overexpression lines BSD2ox-2 and BSD2ox-3 expressed 4.8-fold and 8.8-fold higher BSD2 mRNA, respectively, whereas the empty-vector (EV) harbouring plants had a comparable expression level. The overexpression lines showed a significantly higher CO2 assimilation rate per available CO2 and productivity than EV plants. The maximum carboxylation rate per total catalytic site was accelerated in the overexpression lines, while the number of total catalytic sites and RuBisCO content were unaffected. We then isolated recombinant BSD2 (rBSD2) from E. coli and found that rBSD2 reduces disulfide bonds using reductants present in vivo, for example glutathione, and that rBSD2 has the ability to reactivate RuBisCO that has been inactivated by oxidants. Furthermore, 15% of RuBisCO freshly isolated from leaves of EV was oxidatively inactivated, as compared with 0% in BSD2-overexpression lines, suggesting that the overexpression of BSD2 maintains RuBisCO to be in the reduced active form in vivo. Our results demonstrated that the overexpression of BSD2 improves photosynthetic efficiency in Arabidopsis and we conclude that it is involved in mediating RuBisCO activation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fotosíntesis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Escherichia coli , Regulación de la Expresión Génica de las Plantas , Proteínas Recombinantes , Ribulosa-Bifosfato Carboxilasa/metabolismo
18.
J Biotechnol ; 297: 19-27, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30902643

RESUMEN

Fluorescent proteins are valuable tools in the bioscience field especially in subcellular localization analysis of proteins and expression analysis of genes. Fusion with organelle-targeting signal accumulates fluorescent proteins in specific organelles, increases local brightness, and highlights the signal of fluorescent proteins even in tissues emitting a high background of autofluorescence. For these advantages, organelle-targeted fluorescent proteins are preferably used for promoter:reporter assay to define organ-, tissue-, or cell-specific expression pattern of genes in detail. In this study, we have developed a new series of Gateway cloning technology-compatible binary vectors, pGWBs (attR1-attR2 acceptor sites) and R4L1pGWB (attR4-attL1 acceptor sites), carrying organelle-targeted synthetic green fluorescent protein with S65T mutation (sGFP) (ER-, nucleus-, peroxisome-, and mitochondria-targeted sGFP) and organelle-targeted tag red fluorescent protein (TagRFP) (nucleus-, peroxisome-, and mitochondria-targeted TagRFP). These are available for preparation of promoter:reporter constructs by an LR reaction with a promoter entry clone attL1-promoter-attL2 (for pGWBs) or attL4-promoter-attR1 (for R4L1pGWBs), respectively. A transient expression experiment with particle bombardment using cauliflower mosaic virus 35S promoter-driven constructs has confirmed the correct localization of newly developed organelle-targeted TagRFPs by a co-localization analysis with the previously established organelle-targeted sGFPs. More intense and apparent fluorescence signals were detected by the nucleus- and peroxisome-targeted sGFPs than by the normal sGFPs in the promoter assay using transgenic Arabidopsis thaliana. The new pGWBs and R4L1pGWBs developed here are highly efficient and may serve as useful platforms for more accurate observation of GFP and RFP signals in gene expression analyses of plants.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Vectores Genéticos/metabolismo , Proteínas Luminiscentes/metabolismo , Orgánulos/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas
19.
Biochem Biophys Res Commun ; 510(4): 649-655, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30739789

RESUMEN

Intestinal bacteria produce skatole (3-methylindole) from tryptophan in dietary proteins and ingesting large quantities of animal protein is associated with increased fecal skatole concentrations. Although possibly associated with disrupted intestinal homeostasis, the influence of skatole on intestinal epithelial cellular function has not been characterized in detail. The present study aimed to determine whether skatole induces intestinal epithelial cell (IEC) dysfunction. We found that skatole dose-dependently caused IEC death and time-dependently induced IEC apoptosis. Since skatole directly interacts with aryl hydrocarbon receptors (AhR), we investigated whether these receptors influence the skatole-induced death of IEC. In addition to increased AhR transcriptional activity induced by skatole, the AhR antagonist CH223191 partially suppressed of skatole-induced IEC death. Extracellular signal-related kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) are mitogen-activated protein kinases (MAPK) induced by skatole. None of them were repressed by CH223191, whereas the p38 inhibitor SB203580 promoted skatole-induced IEC death. These findings together indicated that skatole induces both AhR-dependent activation pathways and the AhR-independent activation of p38, consequently regulating the amount of IEC death. Accumulating evidence indicates that consuming large amounts of animal protein is associated with the pathogenesis and progression of inflammatory bowel diseases (IBD). Thus, intestinal skatole production induced by large amounts of dietary animal protein might be associated via IEC death with intestinal pathologies such as IBD.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Mucosa Intestinal/citología , Intestinos/microbiología , Receptores de Hidrocarburo de Aril/metabolismo , Escatol/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Apoptosis , Células CACO-2 , Muerte Celular , Activación Enzimática , Humanos , Mucosa Intestinal/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-30393164

RESUMEN

Prostaglandin (PG) D2 is relatively unstable and dehydrated non-enzymatically into PGJ2 derivatives, which are known to serve as pro-adipogenic factors by activating peroxisome proliferator-activated receptor (PPAR) γ, a master regulator of adipogenesis. 11-Deoxy-11-methylene-PGD2 (11d-11m-PGD2) is a novel, chemically stable, isosteric analogue of PGD2 in which the 11-keto group is replaced by an exocyclic methylene. Here we attempted to investigate pro-adipogenic effects of PGD2 and 11d-11m-PGD2 and to compare the difference in their ways during the maturation phase of cultured adipocytes. The dose-dependent study showed that 11d-11m-PGD2 was significantly more potent than natural PGD2 to stimulate the storage of fats suppressed in the presence of indomethacin, a cyclooxygenase inhibitor. These pro-adipogenic effects were caused by the up-regulation of adipogenesis as evident with higher gene expression levels of adipogenesis markers. Analysis of transcript levels revealed the enhanced gene expression of two subtypes of cell-surface membrane receptors for PGD2, namely the prostanoid DP1 and DP2 (chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2)) receptors together with lipocalin-type PGD synthase during the maturation phase. Specific agonists for DP1, CRTH2, and PPARγ were appreciably effective to rescue adipogenesis attenuated by indomethacin. The action of PGD2 was attenuated by specific antagonists for DP1 and PPARγ. By contrast, the effect of 11d-11m-PGD2 was more potently interfered by a selective antagonist for CRTH2 than that for DP1 while PPARγ antagonist GW9662 had almost no inhibitory effects. These results suggest that PGD2 exerts its pro-adipogenic effect principally through the mediation of DP1 and PPARγ, whereas the stimulatory effect of 11d-11m-PGD2 on adipogenesis occurs preferentially by the interaction with CRTH2.


Asunto(s)
Adipogénesis/efectos de los fármacos , PPAR gamma/genética , Prostaglandina D2/análogos & derivados , Prostaglandina D2/química , Receptores Inmunológicos/química , Receptores de Prostaglandina/química , Células 3T3 , Adipocitos/efectos de los fármacos , Anilidas/farmacología , Animales , Inhibidores de la Ciclooxigenasa/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Indometacina/farmacología , Ratones , PPAR gamma/antagonistas & inhibidores , Prostaglandina D2/antagonistas & inhibidores , Prostaglandina D2/farmacología , Receptores Inmunológicos/antagonistas & inhibidores , Receptores de Prostaglandina/antagonistas & inhibidores , Células Th2/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA