Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Pharm Bull (Tokyo) ; 72(1): 41-47, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38171903

RESUMEN

The capsid of human immunodeficiency virus type 1 (HIV-1) forms a conical structure by assembling oligomers of capsid (CA) proteins and is a virion shell that encapsulates viral RNA. The inhibition of the CA function could be an appropriate target for suppression of HIV-1 replication because the CA proteins are highly conserved among many strains of HIV-1, and the drug targeting CA, lenacapavir, has been clinically developed by Gilead Sciences, Inc. Interface hydrophobic interactions between two CA molecules via the Trp184 and Met185 residues in the CA sequence are indispensable for conformational stabilization of the CA multimer. Our continuous studies found two types of small molecules with different scaffolds, MKN-1 and MKN-3, designed by in silico screening as a dipeptide mimic of Trp184 and Met185 have significant anti-HIV-1 activity. In the present study, MKN-1 derivatives have been designed and synthesized. Their structure-activity relationship studies found some compounds having potent anti-HIV activity. The present results should be useful in the design of novel CA-targeting molecules with anti-HIV activity.


Asunto(s)
Fármacos Anti-VIH , VIH-1 , Humanos , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Ensamble de Virus , Cápside/metabolismo , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/química , Fármacos Anti-VIH/metabolismo
2.
Chem Pharm Bull (Tokyo) ; 71(12): 879-886, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38044140

RESUMEN

In the development of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs, its main protease (Mpro), which is an essential enzyme for viral replication, is a promising target. To date, the Mpro inhibitors, nirmatrelvir and ensitrelvir, have been clinically developed by Pfizer Inc. and Shionogi & Co., Ltd., respectively, as orally administrable drugs to treat coronavirus disease of 2019 (COVID-19). We have also developed several potent inhibitors of SARS-CoV-2 Mpro that include compounds 4, 5, TKB245 (6), and TKB248 (7), which possesses a 4-fluorobenzothiazole ketone moiety as a reactive warhead. In compounds 5 and TKB248 (7) we have also found that replacement of the P1-P2 amide of compounds 4 and TKB245 (6) with the corresponding thioamide improved their pharmacokinetics (PK) profile in mice. Here, we report the design, synthesis and evaluation of SARS-CoV-2 Mpro inhibitors with replacement of a digestible amide bond by surrogates (9-11, 33, and 34) and introduction of fluorine atoms in a metabolically reactive methyl group on the indole moiety (8). As the results, these compounds showed comparable or less potency compared to the corresponding parent compounds, YH-53/5h (2) and 4. These results should provide useful information for further development of Mpro inhibitors.


Asunto(s)
COVID-19 , Animales , Ratones , SARS-CoV-2 , Amidas/farmacología , Halógenos , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales , Antivirales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...