Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bio Protoc ; 14(1): e4917, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38213320

RESUMEN

Autophagy is an essential catabolic pathway used to sequester and engulf cytosolic substrates via a unique double-membrane structure, called an autophagosome. The ubiquitin-like ATG8 proteins play an important role in mediating autophagosome membrane expansion. They are covalently conjugated to phosphatidylethanolamine (PE) on the autophagosomes via a ubiquitin-like conjugation system called ATG8 lipidation. In vitro reconstitution of ATG8 lipidation with synthetic liposomes has been previously established and used widely to characterise the function of the E1 ATG7, the E2 ATG3, and the E3 complex ATG12-ATG5-ATG16L1. However, there is still a lack of a tool to provide kinetic measurements of this enzymatic reaction. In this protocol, we describe a real-time lipidation assay using NBD-labelled ATG8. This real-time assay can distinguish the formation of ATG8 intermediates (ATG7~ATG8 and/or ATG3~ATG8) and, finally, ATG8-PE conjugation. It allows kinetic characterisation of the activity of ATG7, ATG3, and the E3 complex during ATG8 lipidation. Furthermore, this protocol can be adapted to characterise the upstream regulators that may affect protein activity in ATG8 lipidation reaction with a kinetic readout. Key features • Preparation of ATG7 E1 from insect cells (Sf9 cells). • Preparation of ATG3 E2 from bacteria (E. coli). • Preparation of LC3B S3C from bacteria (E. coli). • Preparation of liposomes to monitor the kinetics of ATG8 lipidation in a real-time manner.

2.
Autophagy ; 20(1): 212-213, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37679935

RESUMEN

In our recent paper, we uncovered that ATG3 exhibits a large degree of structural dynamics on autophagic membranes to efficiently carry out LC3 lipidation. ATG3 proteins possess an amphipathic α-helix (AH) identified by a small number of bulky and hydrophobic residues. This biophysical fingerprint allows for transient membrane association of ATG3 and facilitates its enzymatic reaction. This study will pave the way for a structural and mechanistic understanding of how membrane association of ATG proteins is orchestrated during autophagosome formation.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Conformación Proteica en Hélice alfa
3.
FEBS Lett ; 598(1): 107-113, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37259601

RESUMEN

Autophagy is a highly conserved intracellular pathway that is essential for survival in all eukaryotes. In healthy cells, autophagy is used to remove damaged intracellular components, which can be as simple as unfolded proteins or as complex as whole mitochondria. Once the damaged component is captured, the autophagosome engulfs it and closes, isolating the content from the cytoplasm. The autophagosome then fuses with the late endosome and/or lysosome to deliver its content to the lysosome for degradation. Formation of the autophagosome, sequestration or capture of content, and closure all require the ATG proteins, which constitute the essential core autophagy protein machinery. This brief 'nutshell' will highlight recent data revealing the importance of small membrane-associated domains in the ATG proteins. In particular, recent findings from two parallel studies reveal the unexpected key role of α-helical structures in the ATG8 conjugation machinery and ATG8s. These studies illustrate how unique membrane association modules can control the formation of autophagosomes.


Asunto(s)
Autofagosomas , Autofagia , Autofagosomas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Membranas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
4.
Elife ; 122023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37288820

RESUMEN

Autophagy is an essential catabolic pathway which sequesters and engulfs cytosolic substrates via autophagosomes, unique double-membraned structures. ATG8 proteins are ubiquitin-like proteins recruited to autophagosome membranes by lipidation at the C-terminus. ATG8s recruit substrates, such as p62, and play an important role in mediating autophagosome membrane expansion. However, the precise function of lipidated ATG8 in expansion remains obscure. Using a real-time in vitro lipidation assay, we revealed that the N-termini of lipidated human ATG8s (LC3B and GABARAP) are highly dynamic and interact with the membrane. Moreover, atomistic MD simulation and FRET assays indicate that N-termini of LC3B and GABARAP associate in cis on the membrane. By using non-tagged GABARAPs, we show that GABARAP N-terminus and its cis-membrane insertion are crucial to regulate the size of autophagosomes in cells irrespectively of p62 degradation. Our study provides fundamental molecular insights into autophagosome membrane expansion, revealing the critical and unique function of lipidated ATG8.


Asunto(s)
Autofagosomas , Proteínas Asociadas a Microtúbulos , Humanos , Autofagosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/metabolismo
5.
Sci Adv ; 9(25): eadh1281, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37352354

RESUMEN

Autophagosome biogenesis requires a localized perturbation of lipid membrane dynamics and a unique protein-lipid conjugate. Autophagy-related (ATG) proteins catalyze this biogenesis on cellular membranes, but the underlying molecular mechanism remains unclear. Focusing on the final step of the protein-lipid conjugation reaction, the ATG8/LC3 lipidation, we show how the membrane association of the conjugation machinery is organized and fine-tuned at the atomistic level. Amphipathic α helices in ATG3 proteins (AHATG3) have low hydrophobicity and contain less bulky residues. Molecular dynamics simulations reveal that AHATG3 regulates the dynamics and accessibility of the thioester bond of the ATG3~LC3 conjugate to lipids, enabling the covalent lipidation of LC3. Live-cell imaging shows that the transient membrane association of ATG3 with autophagic membranes is governed by the less bulky-hydrophobic feature of AHATG3. The unique properties of AHATG3 facilitate protein-lipid bilayer association, leading to the remodeling of the lipid bilayer required for the formation of autophagosomes.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas Asociadas a Microtúbulos , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Conformación Proteica en Hélice alfa , Membrana Celular/metabolismo
6.
Hum Mol Genet ; 32(16): 2623-2637, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37364041

RESUMEN

ß-propellers that bind polyphosphoinositides (PROPPINs) are an autophagy-related protein family conserved throughout eukaryotes. The PROPPIN family includes Atg18, Atg21 and Hsv2 in yeast and WD-repeat protein interacting with phosphoinositides (WIPI)1-4 in mammals. Mutations in the WIPI genes are associated with human neuronal diseases, including ß-propeller associated neurodegeneration (BPAN) caused by mutations in WDR45 (encoding WIPI4). In contrast to yeast PROPPINs, the functions of mammalian WIPI1-WIPI4 have not been systematically investigated. Although the involvement of WIPI2 in autophagy has been clearly shown, the functions of WIPI1, WIPI3 and WIPI4 in autophagy remain poorly understood. In this study, we comprehensively analyzed the roles of WIPI proteins by using WIPI-knockout (single, double and quadruple knockout) HEK293T cells and recently developed HaloTag-based reporters, which enable us to monitor autophagic flux sensitively and quantitatively. We found that WIPI2 was nearly essential for autophagy. Autophagic flux was unaffected or only slightly reduced by single deletion of WIPI3 (encoded by WDR45B) or WIPI4 but was profoundly reduced by double deletion of WIPI3 and WIPI4. Furthermore, we revealed variable effects of BPAN-related missense mutations on the autophagic activity of WIPI4. BPAN is characterized by neurodevelopmental and neurodegenerative abnormalities, and we found a possible association between the magnitude of the defect of the autophagic activity of WIPI4 mutants and the severity of neurodevelopmental symptoms. However, some of the BPAN-related missense mutations, which produce neurodegenerative signs, showed almost normal autophagic activity, suggesting that non-autophagic functions of WIPI4 may be related to neurodegeneration in BPAN.


Asunto(s)
Fosfatos de Fosfatidilinositol , Saccharomyces cerevisiae , Animales , Humanos , Saccharomyces cerevisiae/metabolismo , Células HEK293 , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/genética , Mamíferos/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo
7.
Methods Mol Biol ; 2251: 121-132, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33481235

RESUMEN

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is an enzyme that converts phosphatidylinositol 4-phosphate [PI4P] to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. PIP5K plays a key role in the regulation of vesicular transport, cytoskeleton reorganization, and cell division. In general, to investigate an enzymatic activity of PIP5K, the amount of incorporated [P32] ATP into PI(4,5)P2 fraction is measured in in vitro reconstitution experiments. However, tools to monitor dynamic changes in its activity in real time have been lacking. Recently, we have developed a novel PIP5K assay using fluorescence spectroscopy. Compared to conventional methods in which lipids extraction steps are needed, our method is easy and quick to perform and enables a real-time analysis. This chapter provides a protocol to set up and perform the novel PIP5K assay we have recently established.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/análisis , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Espectrometría de Fluorescencia/métodos , Animales , Humanos , Fosfatidilinositol 4,5-Difosfato/análisis , Fosfatidilinositol 4,5-Difosfato/química , Fosfatos de Fosfatidilinositol/análisis , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/análisis , Fosfatidilinositoles/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transporte de Proteínas
8.
Curr Biol ; 31(2): 297-309.e8, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33157024

RESUMEN

Organelles of the endomembrane system maintain their identity and integrity during growth or stress conditions by homeostatic mechanisms that regulate membrane flux and biogenesis. At lysosomes and endosomes, the Fab1 lipid kinase complex and the nutrient-regulated target of rapamycin complex 1 (TORC1) control the integrity of the endolysosomal homeostasis and cellular metabolism. Both complexes are functionally connected as Fab1-dependent generation of PI(3,5)P2 supports TORC1 activity. Here, we identify Fab1 as a target of TORC1 on signaling endosomes, which are distinct from multivesicular bodies, and provide mechanistic insight into their crosstalk. Accordingly, TORC1 can phosphorylate Fab1 proximal to its PI3P-interacting FYVE domain, which causes Fab1 to shift to signaling endosomes, where it generates PI(3,5)P2. This, in turn, regulates (1) vacuole morphology, (2) recruitment of TORC1 and the TORC1-regulatory Rag GTPase-containing EGO complex to signaling endosomes, and (3) TORC1 activity. Thus, our study unravels a regulatory feedback loop between TORC1 and the Fab1 complex that controls signaling at endolysosomes.


Asunto(s)
Endosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Pruebas de Enzimas , Retroalimentación Fisiológica , Fosforilación/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Transducción de Señal
9.
Cell Discov ; 6(1): 32, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32509328

RESUMEN

Autophagosome biogenesis is a dynamic membrane event, which is executed by the sequential function of autophagy-related (ATG) proteins. Upon autophagy induction, a cup-shaped membrane structure appears in the cytoplasm, then elongates sequestering cytoplasmic materials, and finally forms a closed double membrane autophagosome. However, how this complex vesicle formation event is strictly controlled and achieved is still enigmatic. Recently, there is accumulating evidence showing that some ATG proteins have the ability to directly interact with membranes, transfer lipids between membranes and regulate lipid metabolism. A novel role for various membrane lipids in autophagosome formation is also emerging. Here, we highlight past and recent key findings on the function of ATG proteins related to autophagosome biogenesis and consider how ATG proteins control this dynamic membrane formation event to organize the autophagosome by collaborating with membrane lipids.

10.
Artículo en Inglés | MEDLINE | ID: mdl-31349025

RESUMEN

The endoplasmic reticulum (ER) is a highly organized organelle that performs vital functions including de novo membrane lipid synthesis and transport. Accordingly, numerous lipid biosynthesis enzymes are localized in the ER membrane. However, it is now evident that lipid metabolism is sub-compartmentalized within the ER and that lipid biosynthetic enzymes engage with lipid transfer proteins (LTPs) to rapidly shuttle newly synthesized lipids from the ER to other organelles. As such, intimate relationships between lipid metabolism and lipid transfer pathways exist within the ER network. Notably, certain LTPs enhance the activities of lipid metabolizing enzymes; likewise, lipid metabolism can ensure the specificity of LTP transfer/exchange reactions. Yet, our understanding of these mutual relationships is still emerging. Here, we highlight past and recent key findings on specialized ER membrane domains involved in efficient lipid metabolism and transport and consider unresolved issues in the field.


Asunto(s)
Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Animales , Transporte Biológico , Vías Biosintéticas , Proteínas Portadoras/metabolismo , Humanos , Fosfolípidos/metabolismo
11.
Elife ; 82019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31526472

RESUMEN

Lipoproteins are lipid-protein complexes that are primarily generated and secreted from the intestine, liver, and visceral endoderm and delivered to peripheral tissues. Lipoproteins, which are assembled in the endoplasmic reticulum (ER) membrane, are released into the ER lumen for secretion, but its mechanism remains largely unknown. Here, we show that the release of lipoproteins from the ER membrane requires VMP1, an ER transmembrane protein essential for autophagy and certain types of secretion. Loss of vmp1, but not other autophagy-related genes, in zebrafish causes lipoprotein accumulation in the intestine and liver. Vmp1 deficiency in mice also leads to lipid accumulation in the visceral endoderm and intestine. In VMP1-depleted cells, neutral lipids accumulate within lipid bilayers of the ER membrane, thus affecting lipoprotein secretion. These results suggest that VMP1 is important for the release of lipoproteins from the ER membrane to the ER lumen in addition to its previously known functions.


Asunto(s)
Retículo Endoplásmico/metabolismo , Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Proteínas de la Membrana/deficiencia , Ratones , Transporte de Proteínas , Pez Cebra
12.
Mol Cell ; 75(5): 1043-1057.e8, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31402097

RESUMEN

The plasma membrane (PM) is composed of a complex lipid mixture that forms heterogeneous membrane environments. Yet, how small-scale lipid organization controls physiological events at the PM remains largely unknown. Here, we show that ORP-related Osh lipid exchange proteins are critical for the synthesis of phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2], a key regulator of dynamic events at the PM. In real-time assays, we find that unsaturated phosphatidylserine (PS) and sterols, both Osh protein ligands, synergistically stimulate phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity. Biophysical FRET analyses suggest an unconventional co-distribution of unsaturated PS and phosphatidylinositol 4-phosphate (PI4P) species in sterol-containing membrane bilayers. Moreover, using in vivo imaging approaches and molecular dynamics simulations, we show that Osh protein-mediated unsaturated PI4P and PS membrane lipid organization is sensed by the PIP5K specificity loop. Thus, ORP family members create a nanoscale membrane lipid environment that drives PIP5K activity and PI(4,5)P2 synthesis that ultimately controls global PM organization and dynamics.


Asunto(s)
Proteínas Portadoras/metabolismo , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Proc Natl Acad Sci U S A ; 115(18): 4684-4689, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29674454

RESUMEN

Lysosomes have an important role in cellular protein and organelle quality control, metabolism, and signaling. On the surface of lysosomes, the PIKfyve/Fab1 complex generates phosphatidylinositol 3,5-bisphosphate, PI-3,5-P2, which is critical for lysosomal membrane homeostasis during acute osmotic stress and for lysosomal signaling. Here, we identify the inverted BAR protein Ivy1 as an inhibitor of the Fab1 complex with a direct influence on PI-3,5-P2 levels and vacuole homeostasis. Ivy1 requires Ypt7 binding for its function, binds PI-3,5-P2, and interacts with the Fab1 kinase. Colocalization of Ivy1 and Fab1 is lost during osmotic stress. In agreement with Ivy1's role as a Fab1 regulator, its overexpression blocks Fab1 activity during osmotic shock and vacuole fragmentation. Conversely, loss of Ivy1, or lateral relocalization of Ivy1 on vacuoles away from Fab1, results in vacuole fragmentation and poor growth. Our data suggest that Ivy1 modulates Fab1-mediated PI-3,5-P2 synthesis during membrane stress and may allow adjustment of the vacuole membrane environment.


Asunto(s)
Proteínas Portadoras/metabolismo , Membranas Intracelulares/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas Portadoras/genética , Lisosomas/genética , Lisosomas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
14.
FEBS Lett ; 591(23): 3819-3830, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29113029

RESUMEN

ATG2 is one of the autophagy-related (ATG) proteins essential for autophagosome formation and localizes to isolation membranes and lipid droplets in mammalian cells. Here, we investigated the requirement of regions in ATG2A for its organellar localization and function. The N-terminal amino acids 1-198 and the C-terminal amino acids 1830-1938 are required for the localization to isolation membranes and lipid droplets, respectively. The C-terminal region is not required for the localization to isolation membranes and for autophagy. We also identified an amphipathic helix in ATG2A that is required for both its localization to organelles and autophagosome formation. These data suggest that the dual localization of ATG2A is regulated by different regions.


Asunto(s)
Autofagia/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Células Cultivadas , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/ultraestructura , Proteínas de la Membrana/genética , Ratones , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
15.
Autophagy ; 13(10): 1795-1796, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28816597

RESUMEN

In our recent paper, we biochemically analyzed autophagosome-related membranes at the initiation stage of macroautophagy/autophagy using atg knockout (KO) cells and demonstrated that the ULK complex is recruited to 2 distinct membranes: the ER membrane and ATG9A-positive autophagosome precursors. We have also identified phosphatidylinositol synthase (PIS)-enriched ER subdomains as the initiation site of autophagosome formation. Based on these findings, we propose that the ULK complex, the PIS-enriched ER subdomain, and ATG9A vesicles together initiate autophagosome formation.


Asunto(s)
Autofagosomas/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Retículo Endoplásmico/metabolismo , Microdominios de Membrana/metabolismo , Complejos Multiproteicos/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/fisiología , Células Cultivadas , Retículo Endoplásmico/química , Retículo Endoplásmico/enzimología , Técnicas de Silenciamiento del Gen , Humanos , Microdominios de Membrana/química , Microdominios de Membrana/enzimología , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/fisiología , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/fisiología
16.
Autophagy ; 13(8): 1452-1464, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28598244

RESUMEN

Macroautophagy/autophagy, which is one of the main degradation systems in the cell, is mediated by a specialized organelle, the autophagosome. Purification of autophagosomes before fusion with lysosomes is important for both mechanistic and physiological studies of the autophagosome. Here, we report a simple method to accumulate undigested autophagosomes. Overexpression of the autophagosomal Qa-SNARE STX17 (syntaxin 17) lacking the N-terminal domain (NTD) or N-terminally tagged GFP-STX17 causes accumulation of autophagosomes. A HeLa cell line, which expresses GFP-STX17ΔNTD or full-length GFP-STX17 under the control of the tetracycline-responsive promoter, accumulates a large number of undigested autophagosomes devoid of lysosomal markers or early autophagy factors upon treatment with doxycycline. Using this inducible cell line, nascent autophagosomes can be easily purified by OptiPrep density-gradient centrifugation and immunoprecipitation. This novel method should be useful for further characterization of nascent autophagosomes.


Asunto(s)
Autofagosomas/metabolismo , Genes Dominantes , Mutación/genética , Proteínas Qa-SNARE/genética , Autofagosomas/efectos de los fármacos , Autofagosomas/ultraestructura , Biomarcadores/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Tetraciclina/farmacología
17.
EMBO J ; 36(12): 1719-1735, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28495679

RESUMEN

The autophagosome, a double-membrane structure mediating degradation of cytoplasmic materials by macroautophagy, is formed in close proximity to the endoplasmic reticulum (ER). However, how the ER membrane is involved in autophagy initiation and to which membrane structures the autophagy-initiation complex is localized have not been fully characterized. Here, we were able to biochemically analyze autophagic intermediate membranes and show that the autophagy-initiation complex containing ULK and FIP200 first associates with the ER membrane. To further characterize the ER subdomain, we screened phospholipid biosynthetic enzymes and found that the autophagy-initiation complex localizes to phosphatidylinositol synthase (PIS)-enriched ER subdomains. Then, the initiation complex translocates to the ATG9A-positive autophagosome precursors in a PI3P-dependent manner. Depletion of phosphatidylinositol (PI) by targeting bacterial PI-specific phospholipase C to the PIS domain impairs recruitment of downstream autophagy factors and autophagosome formation. These findings suggest that the autophagy-initiation complex, the PIS-enriched ER subdomain, and ATG9A vesicles together initiate autophagosome formation.


Asunto(s)
Autofagosomas/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/análisis , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Biogénesis de Organelos , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Transporte de Proteínas
18.
J Biochem ; 158(4): 331-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25998247

RESUMEN

Lysophosphatidylcholine (LPC) and oxysterols which are major components in oxidized low-density lipoprotein have been shown to possess an opposite effect on the expression of sterol regulatory element-binding protein-2 (SREBP-2) target genes in endothelial cells. In this study, we aimed at elucidating the mechanisms of activation of SREBP-2 by LPC and evaluating the effects of LPC and 25-hydroxycholesterol (25-HC) on the release of inflammatory cytokines. Human umbilical vein endothelial cells were treated with LPC or oxysterols including 25-HC. LPC activated SREBP-2 within 15 min, resulting in induction of expression of SREBP-2 target genes which were involved in intracellular cholesterol homeostasis. The rapid activation of SREBP-2 was caused by enhanced efflux of intracellular cholesterol, which was evaluated using (14)C-acetate. The LPC-induced activation of SREBP-2 was inhibited by addition of 25-HC. In contrast, both LPC and 25-HC increased release of interleukin-6 (IL-6) and IL-8, respectively and additively. In conclusion, LPC activated SREBP-2 via enhancement of cholesterol efflux, which was suppressed by 25-HC. The release of inflammatory cytokines such as IL-6 and IL-8 in endothelial cells was SREBP-2-independent. LPC and 25-HC may act competitively in cholesterol homeostasis but additively in inflammatory cytokine release.


Asunto(s)
Colesterol/metabolismo , Endotelio Vascular/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lisofosfatidilcolinas/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/agonistas , Regulación hacia Arriba , Transporte Activo de Núcleo Celular , Aterosclerosis/sangre , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Transporte Biológico , Radioisótopos de Carbono , Membrana Celular/inmunología , Membrana Celular/metabolismo , Membrana Celular/patología , Núcleo Celular/inmunología , Núcleo Celular/metabolismo , Núcleo Celular/patología , Células Cultivadas , Colesterol/sangre , Colesterol/química , Regulación hacia Abajo , Endotelio Vascular/citología , Endotelio Vascular/inmunología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hidroxicolesteroles/análisis , Hidroxicolesteroles/sangre , Hidroxicolesteroles/metabolismo , Interleucina-6/agonistas , Interleucina-6/sangre , Interleucina-8/agonistas , Interleucina-8/sangre , Lipoproteínas LDL/sangre , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Lisofosfatidilcolinas/análisis , Lisofosfatidilcolinas/antagonistas & inhibidores , Lisofosfatidilcolinas/sangre , Oxidación-Reducción , Proteína 2 de Unión a Elementos Reguladores de Esteroles/antagonistas & inhibidores , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
19.
Mol Biol Cell ; 25(8): 1327-37, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24554770

RESUMEN

Membrane fusion is generally controlled by Rabs, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), and tethering complexes. Syntaxin 17 (STX17) was recently identified as the autophagosomal SNARE required for autophagosome-lysosome fusion in mammals and Drosophila. In this study, to better understand the mechanism of autophagosome-lysosome fusion, we searched for STX17-interacting proteins. Immunoprecipitation and mass spectrometry analysis identified vacuolar protein sorting 33A (VPS33A) and VPS16, which are components of the homotypic fusion and protein sorting (HOPS)-tethering complex. We further confirmed that all HOPS components were coprecipitated with STX17. Knockdown of VPS33A, VPS16, or VPS39 blocked autophagic flux and caused accumulation of STX17- and microtubule-associated protein light chain (LC3)-positive autophagosomes. The endocytic pathway was also affected by knockdown of VPS33A, as previously reported, but not by knockdown of STX17. By contrast, ultraviolet irradiation resistance-associated gene (UVRAG), a known HOPS-interacting protein, did not interact with the STX17-HOPS complex and may not be directly involved in autophagosome-lysosome fusion. Collectively these results suggest that, in addition to its well-established function in the endocytic pathway, HOPS promotes autophagosome-lysosome fusion through interaction with STX17.


Asunto(s)
Lisosomas/inmunología , Fusión de Membrana/fisiología , Fagosomas/inmunología , Proteínas Qa-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Proteínas Relacionadas con la Autofagia , Fusión Celular , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Fusión de Membrana/genética , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Oligopéptidos/inmunología , Unión Proteica , Proteínas Qa-SNARE/genética , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Transporte Vesicular/genética
20.
Genes Cells ; 19(1): 13-27, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24245814

RESUMEN

Oligo-astheno-teratozoospermia (OAT), a condition that includes low sperm number, low sperm motility and abnormal sperm morphology, is the commonest cause of male infertility. Because genetic analysis is frequently impeded by the infertility phenotype, the genetic basis of many of OAT conditions has been hard to verify. Here, we show that deficiency of ORP4, a sterol-binding protein in the oxysterol-binding protein (OSBP)-related protein family, causes male infertility due to severe OAT in mice. In ORP4-deficient mice, spermatogonia proliferation and subsequent meiosis occurred normally, but the morphology of elongating and elongated spermatids was severely distorted, with round-shaped head, curled back head or symplast. Spermatozoa derived from ORP4-deficient mice had little or no motility and no fertilizing ability in vitro. In ORP4-deficient testis, postmeiotic spermatids underwent extensive apoptosis, leading to a severely reduced number of spermatozoa. At the ultrastructural level, nascent acrosomes appeared to normally develop in round spermatids, but acrosomes were detached from the nucleus in elongating spermatids. These results suggest that ORP4 is essential for the postmeiotic differentiation of germ cells.


Asunto(s)
Astenozoospermia/genética , Oligospermia/genética , Receptores de Esteroides/metabolismo , Espermatozoides/anomalías , Animales , Astenozoospermia/metabolismo , Astenozoospermia/patología , Femenino , Masculino , Ratones , Ratones Noqueados , Oligospermia/metabolismo , Oligospermia/patología , Receptores de Esteroides/deficiencia , Receptores de Esteroides/genética , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA