RESUMEN
Missense mutations in the gene encoding the microtubule-associated protein TAU (current and approved symbol is MAPT) cause autosomal dominant forms of frontotemporal dementia. Multiple models of frontotemporal dementia based on transgenic expression of human TAU in experimental model organisms, including Drosophila, have been described. These models replicate key features of the human disease but do not faithfully recreate the genetic context of the human disorder. Here we use CRISPR-Cas-mediated gene editing to model frontotemporal dementia caused by the TAU P301L mutation by creating the orthologous mutation, P251L, in the endogenous Drosophila tau gene. Flies heterozygous or homozygous for Tau P251L display age-dependent neurodegeneration, display metabolic defects, and accumulate DNA damage in affected neurons. To understand the molecular events promoting neuronal dysfunction and death in knock-in flies, we performed single-cell RNA sequencing on approximately 130,000 cells from brains of Tau P251L mutant and control flies. We found that expression of disease-associated mutant tau altered gene expression cell autonomously in all neuronal cell types identified. Gene expression was also altered in glial cells, suggestive of non-cell-autonomous regulation. Cell signaling pathways, including glial-neuronal signaling, were broadly dysregulated as were brain region and cell type-specific protein interaction networks and gene regulatory programs. In summary, we present here a genetic model of tauopathy that faithfully recapitulates the genetic context and phenotypic features of the human disease, and use the results of comprehensive single-cell sequencing analysis to outline pathways of neurotoxicity and highlight the potential role of non-cell-autonomous changes in glia.
Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Drosophila , Neuroglía , Neuronas , Tauopatías , Proteínas tau , Animales , Neuroglía/metabolismo , Proteínas tau/metabolismo , Proteínas tau/genética , Neuronas/metabolismo , Neuronas/patología , Tauopatías/genética , Tauopatías/metabolismo , Tauopatías/patología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Transducción de Señal , Drosophila melanogaster/genética , Técnicas de Sustitución del Gen , Drosophila/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Animales Modificados Genéticamente , Edición Génica , Sistemas CRISPR-CasRESUMEN
Whether neurodegenerative diseases linked to misfolding of the same protein share genetic risk drivers or whether different protein-aggregation pathologies in neurodegeneration are mechanistically related remains uncertain. Conventional genetic analyses are underpowered to address these questions. Through careful selection of patients based on protein aggregation phenotype (rather than clinical diagnosis) we can increase statistical power to detect associated variants in a targeted set of genes that modify proteotoxicities. Genetic modifiers of alpha-synuclein (ÉS) and beta-amyloid (Aß) cytotoxicity in yeast are enriched in risk factors for Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. Here, along with known AD/PD risk genes, we deeply sequenced exomes of 430 ÉS/Aß modifier genes in patients across alpha-synucleinopathies (PD, Lewy body dementia and multiple system atrophy). Beyond known PD genes GBA1 and LRRK2, rare variants AD genes (CD33, CR1 and PSEN2) and Aß toxicity modifiers involved in RhoA/actin cytoskeleton regulation (ARGHEF1, ARHGEF28, MICAL3, PASK, PKN2, PSEN2) were shared risk factors across synucleinopathies. Actin pathology occurred in iPSC synucleinopathy models and RhoA downregulation exacerbated ÉS pathology. Even in sporadic PD, the expression of these genes was altered across CNS cell types. Genome-wide CRISPR screens revealed the essentiality of PSEN2 in both human cortical and dopaminergic neurons, and PSEN2 mutation carriers exhibited diffuse brainstem and cortical synucleinopathy independent of AD pathology. PSEN2 contributes to a common-risk signal in PD GWAS and regulates ÉS expression in neurons. Our results identify convergent mechanisms across synucleinopathies, some shared with AD.
RESUMEN
Missense mutations in the gene encoding the microtubule-associated protein tau cause autosomal dominant forms of frontotemporal dementia. Multiple models of frontotemporal dementia based on transgenic expression of human tau in experimental model organisms, including Drosophila, have been described. These models replicate key features of the human disease, but do not faithfully recreate the genetic context of the human disorder. Here we use CRISPR-Cas mediated gene editing to model frontotemporal dementia caused by the tau P301L mutation by creating the orthologous mutation, P251L, in the endogenous Drosophila tau gene. Flies heterozygous or homozygous for tau P251L display age-dependent neurodegeneration, metabolic defects and accumulate DNA damage in affected neurons. To understand the molecular events promoting neuronal dysfunction and death in knock-in flies we performed single-cell RNA sequencing on approximately 130,000 cells from brains of tau P251L mutant and control flies. We found that expression of disease-associated mutant tau altered gene expression cell autonomously in all neuronal cell types identified and non-cell autonomously in glial cells. Cell signaling pathways, including glial-neuronal signaling, were broadly dysregulated as were brain region and cell-type specific protein interaction networks and gene regulatory programs. In summary, we present here a genetic model of tauopathy, which faithfully recapitulates the genetic context and phenotypic features of the human disease and use the results of comprehensive single cell sequencing analysis to outline pathways of neurotoxicity and highlight the role of non-cell autonomous changes in glia.
RESUMEN
Neuromuscular disorders caused by dysfunction of the mitochondrial respiratory chain are common, severe and untreatable. We recovered a number of mitochondrial genes, including electron transport chain components, in a large forward genetic screen for mutations causing age-related neurodegeneration in the context of proteostasis dysfunction. We created a model of complex I deficiency in the Drosophila retina to probe the role of protein degradation abnormalities in mitochondrial encephalomyopathies. Using our genetic model, we found that complex I deficiency regulates both the ubiquitin/proteasome and autophagy/lysosome arms of the proteostasis machinery. We further performed an in vivo kinome screen to uncover new and potentially druggable mechanisms contributing to complex I related neurodegeneration and proteostasis failure. Reduction of RIOK kinases and the innate immune signaling kinase pelle prevented neurodegeneration in complex I deficiency animals. Genetically targeting oxidative stress, but not RIOK1 or pelle knockdown, normalized proteostasis markers. Our findings outline distinct pathways controlling neurodegeneration and protein degradation in complex I deficiency and introduce an experimentally facile model in which to study these debilitating and currently treatment-refractory disorders.
Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Drosophila , Complejo I de Transporte de Electrón , Complejo I de Transporte de Electrón/deficiencia , Mitocondrias , Enfermedades Mitocondriales , Proteostasis , Animales , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/deficiencia , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Autofagia/genética , Estrés Oxidativo/genética , Drosophila melanogaster/genética , Mutación , Lisosomas/metabolismo , Lisosomas/genética , Drosophila/genética , Drosophila/metabolismo , Transducción de SeñalRESUMEN
Chemotherapy-related cognitive impairment (CRCI) is a common adverse effect of treatment and is characterized by deficits involving multiple cognitive domains including memory. Despite the significant morbidity of CRCI and the expected increase in cancer survivors over the coming decades, the pathophysiology of CRCI remains incompletely understood, highlighting the need for new model systems to study CRCI. Given the powerful array of genetic approaches and facile high throughput screening ability in Drosophila, our goal was to validate a Drosophila model relevant to CRCI. We administered the chemotherapeutic agents cisplatin, cyclophosphamide, and doxorubicin to adult Drosophila. Neurologic deficits were observed with all tested chemotherapies, with doxorubicin and in particular cisplatin also resulting in memory deficits. We then performed histologic and immunohistochemical analysis of cisplatin-treated Drosophila tissue, demonstrating neuropathologic evidence of increased neurodegeneration, DNA damage, and oxidative stress. Thus, our Drosophila model relevant to CRCI recapitulates clinical, radiologic, and histologic alterations reported in chemotherapy patients. Our new Drosophila model can be used for mechanistic dissection of pathways contributing to CRCI (and chemotherapy-induced neurotoxicity more generally) and pharmacologic screens to identify disease-modifying therapies.
Asunto(s)
Antineoplásicos , Deterioro Cognitivo Relacionado con la Quimioterapia , Disfunción Cognitiva , Adulto , Animales , Humanos , Cisplatino/efectos adversos , Antineoplásicos/efectos adversos , Disfunción Cognitiva/diagnóstico , Drosophila , Doxorrubicina/efectos adversosRESUMEN
Aß peptides derived from the amyloid precursor protein (APP) have been strongly implicated in the pathogenesis of Alzheimer's disease. However, the normal function of APP and the importance of that role in neurodegenerative disease is less clear. We recover the Drosophila ortholog of APP, Appl, in an unbiased forward genetic screen for neurodegeneration mutants. We perform comprehensive single cell transcriptional and proteomic studies of Appl mutant flies to investigate Appl function in the aging brain. We find an unexpected role for Appl in control of multiple cellular pathways, including translation, mitochondrial function, nucleic acid and lipid metabolism, cellular signaling and proteostasis. We mechanistically define a role for Appl in regulating autophagy through TGFß signaling and document the broader relevance of our findings using mouse genetic, human iPSC and in vivo tauopathy models. Our results demonstrate a conserved role for APP in controlling age-dependent proteostasis with plausible relevance to Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer , Proteínas de Drosophila , Enfermedades Neurodegenerativas , Animales , Humanos , Ratones , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/metabolismo , Proteostasis , Proteómica , Envejecimiento/genética , Drosophila/genética , Drosophila/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismoRESUMEN
Chemotherapy-related cognitive impairment (CRCI) is a common adverse effect of treatment and is characterized by deficits involving multiple cognitive domains including memory. Despite the significant morbidity of CRCI and the expected increase in cancer survivors over the coming decades, the pathophysiology of CRCI remains incompletely understood, highlighting the need for new model systems to study CRCI. Given the powerful array of genetic approaches and facile high throughput screening ability in Drosophila, our goal was to validate a Drosophila model of CRCI. We administered the chemotherapeutic agents cisplatin, cyclophosphamide, and doxorubicin to adult Drosophila. Neurocognitive deficits were observed with all tested chemotherapies, especially cisplatin. We then performed histologic and immunohistochemical analysis of cisplatin-treated Drosophila tissue, demonstrating neuropathologic evidence of increased neurodegeneration, DNA damage, and oxidative stress. Thus, our Drosophila model of CRCI recapitulates clinical, radiologic, and histologic alterations reported in chemotherapy patients. Our new Drosophila model can be used for mechanistic dissection of pathways contributing to CRCI and pharmacologic screens to identify novel therapies to ameliorate CRCI.
RESUMEN
AIM: To investigate the regulatory potential of the Nnat second intron within the Nnat/Blcap micro-imprinted domain. MATERIALS & METHODS: Mice with deletion of Nnat second intron at the endogenous Nnat/Blcap micro-imprinted domain were used to examine the effect of Nnat second intron on the transcriptional regulation of the Nnat and Blcap genes. RESULTS & CONCLUSION: Deletion of Nnat second intron affected Nnat expression in cis leading to the loss of Nnat expression from the active paternal allele. Nnat second intron was found to have the characteristics of an imprint control region including allele-specific DNA methylation and histone modifications and it also regulated the epigenetic profile of Nnat promoter by acting as an enhancer. Nnat second intron was also found to be regulating the expression of the Blcap transcripts.
Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Impresión Genómica , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Secuencias Reguladoras de Ácidos Nucleicos , Alelos , Animales , Islas de CpG , Metilación de ADN , Epigénesis Genética , Perfilación de la Expresión Génica , Intrones , Ratones , Ratones NoqueadosRESUMEN
The actin cytoskeleton provides structural stability and adaptability to the cell. Neuronal dendrites frequently undergo morphological changes by emanating, elongating, and withdrawing branches. However, the knowledge about actin dynamics in dendrites during these processes is limited. By performing in vivo imaging of F-actin markers, we found that F-actin was highly dynamic and heterogeneously distributed in dendritic shafts with enrichment at terminal dendrites. A dynamic F-actin population that we named actin blobs propagated bidirectionally at an average velocity of 1 µm/min. Interestingly, these actin blobs stalled at sites where new dendrites would branch out in minutes. Overstabilization of F-actin by the G15S mutant abolished actin blobs and dendrite branching. We identified the F-actin-severing protein Tsr/cofilin as a regulator of dynamic actin blobs and branching activity. Hence, actin blob localization at future branching sites represents a dendrite-branching mechanism to account for highly diversified dendritic morphology.