Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nature ; 633(8031): 804-810, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39261739

RESUMEN

Any electrical signal propagating in a metallic conductor loses amplitude due to the natural resistance of the metal. Compensating for such losses presently requires repeatedly breaking the conductor and interposing amplifiers that consume and regenerate the signal. This century-old primitive severely constrains the design and performance of modern interconnect-dense chips1. Here we present a fundamentally different primitive based on semi-stable edge of chaos (EOC)2,3, a long-theorized but experimentally elusive regime that underlies active (self-amplifying) transmission in biological axons4,5. By electrically accessing the spin crossover in LaCoO3, we isolate semi-stable EOC, characterized by small-signal negative resistance and amplification of perturbations6,7. In a metallic line atop a medium biased at EOC, a signal input at one end exits the other end amplified, without passing through a separate amplifying component. While superficially resembling superconductivity, active transmission offers controllably amplified time-varying small-signal propagation at normal temperature and pressure, but requires an electrically energized EOC medium. Operando thermal mapping reveals the mechanism of amplification-bias energy of the EOC medium, instead of fully dissipating as heat, is partly used to amplify signals in the metallic line, thereby enabling spatially continuous active transmission, which could transform the design and performance of complex electronic chips.


Asunto(s)
Axones , Axones/fisiología , Temperatura , Animales , Modelos Neurológicos , Conductividad Eléctrica , Superconductividad
2.
ACS Nano ; 18(36): 24819-24828, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39177965

RESUMEN

Semiconducting transition metal dichalcogenides (TMDs) are promising for high-specific-power photovoltaics due to their desirable band gaps, high absorption coefficients, and ideally dangling-bond-free surfaces. Despite their potential, the majority of TMD solar cells to date are fabricated in a nonscalable fashion, with exfoliated materials, due to the lack of high-quality, large-area, multilayer TMDs. Here, we present the scalable, thickness-tunable synthesis of multilayer WSe2 films by selenizing prepatterned tungsten with either solid-source selenium at 900 °C or H2Se precursors at 650 °C. Both methods yield photovoltaic-grade, wafer-scale WSe2 films with a layered van der Waals structure and superior characteristics, including charge carrier lifetimes up to 144 ns, over 14× higher than those of any other large-area TMD films previously demonstrated. Simulations show that such carrier lifetimes correspond to ∼22% power conversion efficiency and ∼64 W g-1 specific power in a packaged solar cell, or ∼3 W g-1 in a fully packaged solar module. The results of this study could facilitate the mass production of high-efficiency multilayer WSe2 solar cells at low cost.

3.
Nat Commun ; 12(1): 7034, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887383

RESUMEN

Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact-TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance. Here, we address these fundamental issues by employing: (1) transparent graphene contacts to mitigate Fermi-level pinning, (2) MoOx capping for doping, passivation and anti-reflection, and (3) a clean, non-damaging direct transfer method to realize devices on lightweight flexible polyimide substrates. These lead to record PCE of 5.1% and record specific power of 4.4 W g-1 for flexible TMD (WSe2) solar cells, the latter on par with prevailing thin-film solar technologies cadmium telluride, copper indium gallium selenide, amorphous silicon and III-Vs. We further project that TMD solar cells could achieve specific power up to 46 W g-1, creating unprecedented opportunities in a broad range of industries from aerospace to wearable and implantable electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...