Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 9: 936623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172613

RESUMEN

Haematopoietic stem and progenitor cells (HSPCs) are used for transplantation to reconstruct the haematopoietic pathways in humans receiving severe chemotherapy. However, the characteristics of canine HSPCs, such as specific surface antigens and gene expression profiles, are still unclear. This study aimed to characterise the haematopoietic ability and gene expression profiles of canine bone marrow HSPCs in healthy dogs. In this study, the CD34 positive (CD34+) cells were defined as classical HSPCs, CD34+/CD45 diminished (CD45dim) cells as more enriched HSPCs, and whole viable cells as controls. Haematopoietic abilities and gene expression profiles were evaluated using a colony-forming unit assay and RNA-sequencing analysis. Canine CD34+/CD45dim cells exhibited a significantly higher haematopoietic colony formation ability and expressed more similarity in the gene expression profiles to human and mouse HSPCs than those of the other cell fractions. Furthermore, the canine CD34+/CD45dim cells expressed candidate cell surface antigens necessary to define the canine haematopoietic hierarchy roadmap. These results indicate that the canine CD34+/CD45dim cells express the HSPC characteristics more than the other cell fractions, thereby suggesting that these cells have the potential to be used for studying haematopoietic stem cells in dogs.

2.
Regen Ther ; 19: 1-8, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35024388

RESUMEN

INTRODUCTION: Differentiation of hepatocytes and culture methods have been investigated in dogs as a tool to establish liver transplant and drug metabolism examination systems. However, mass culture techniques for canine hepatocytes (cHep) have not been investigated, and it is necessary to construct a suitable culture system. Recently, a protocol called Bud production has attracted attention, and a mixed culture of human and mouse hepatocytes, stem cells, and artificial blood vessels significantly improved the size and formation ratio of spheroids. The purpose of this study was to investigate and improve the in vitro culture of cHep by mixing canine adipose-derived mesenchymal stem cells (cASCs) and human umbilical vein endothelial cells (HUVECs). METHODS: Spheroid formation ratio and histological examination were evaluated among four culture methods, including cHep alone, two-mix (cHep + cASCs and cHep + HUVEC), and three-mix (cHep + HUVEC + cASCs), on days 0, 4, and 7. Expression levels of liver-related genes (ALB, AFP, α1-AT, CDH1, CYP2E1, CYP3A12, and TAT) were evaluated by quantitative real-time polymerase chain reaction (RT-PCR). Protein expression of albumin, vimentin, and von Willebrand Factor (vWF) was investigated to confirm the location of the hepatocytes. RESULTS: The ratio of spheroid formation was 60.2% in the three-mix culture and was significantly improved compared with cHep alone (5.9%) and two-mix; cHep + cASCs (36.2%) and cHep + HUVEC (26.4%) (P < 0.001). Histological evaluation revealed that the three-mix spheroids formed large canine hepatocyte spheroids (LcHS), and hepatocytes were distributed in the center of the spheroids. Quantitative gene expression analysis of LcHS showed that liver-related genes expression were maintained the same levels with that of a culture of cHep alone from days 4-7. CONCLUSION: These results revealed that the three-mix culture method using cHep, HUVECs, and cASCs was capable of promoting LcHS without impairing liver function in cHep, suggesting that LcHS could be used for the application of high-volume culture techniques in dogs.

3.
Regen Ther ; 14: 165-176, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32123700

RESUMEN

INTRODUCTION: Hepatocytes, which account for the majority of liver tissue, are derived from the endoderm and become hepatocytes via differentiation of hepatic progenitor cells. Induced hepatocyte-like (iHep) cells and artificial liver tissues are expected to become useful, efficient therapies for severe and refractory liver diseases and to contribute to drug discovery research. The establishment of iHep cell lines are needed to carry out liver transplants and assess liver toxicity in the rising number of dogs affected by liver disease. Recently, direct conversion of non-hepatocyte cells into iHep cells was achieved by transfecting mouse adult fibroblasts with the Forkhead box protein A1 (Foxa1) and hepatocyte nuclear factor 4 homeobox alpha (Hnf4α) genes. Here, we applied this conversion process for the differentiation of canine bone marrow stem cells (cBMSCs) into hepatocyte-like cells. METHODS: Bone marrow specimens were collected from four healthy Beagle dogs and used to culture cBMSCs in Dulbecco's Modified Eagle's Medium (DMEM). The cBMSCs displayed the following characteristic features: plastic adherence; differentiation into adipocytes, osteoblasts and chondrocytes; and a cell surface antigen profile of CD29 (+), CD44 (+), CD90 (+), CD45 (-), CD34 (-) and CD14 (-), or CD11b (-) and CD79a (-), or CD19 (-) and HLA class II(-). The cBMSCs were seeded in a collagen I-coated plate and cultured in DMEM with 10% fetal bovine serum and transfected with retroviruses expressing Foxa1 and Hnf4α the following day. Canine iHep cells were differentiated from cBMSCs in culture on day 10, and were analyzed for morphology, RNA expression, immunocytochemistry, urea production, and low-density lipoprotein (LDL) metabolism. RESULTS: The cBMSCs expressed CD29 (98.06 ± 1.14%), CD44 (99.59 ± 0.27%) and CD90 (92.78 ± 4.89%), but did not express CD14 (0.47 ± 0.29%), CD19 (0.44 ± 0.39%), CD34 (0.33 ± 0.25%), CD45 (0.46 ± 0.34%) or MHC class II (0.54 ± 0.40%). The iHep cells exhibited morphology that included circular to equilateral circular shapes, and the formation of colonies that adhered to each other 10 days after Foxa1 and Hnf4α transfection. Quantitative RT-PCR analysis showed that the expression levels of the genes encoding albumin (ALB) and cadherin (CDH) in iHep cells on day 10 were increased approximately 100- and 10,000-fold, respectively, compared with cBMSCs. Corresponding protein expression of ALB and epithelial-CDH was confirmed by immunocytochemistry. Important hepatic functions, including LDL metabolic ability and urea production, were increased in iHep cells on day 10. CONCLUSION: We successfully induced cBMSCs to differentiate into functional iHep cells. To our knowledge, this is the first report of canine liver tissue differentiation using Foxa1 and Hnf4α gene transfection. Canine iHep cells are expected to provide insights for the construction of liver models for drug discovery research and may serve as potential therapeutics for canine liver disease.

4.
Regen Ther ; 15: 210-215, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33426221

RESUMEN

INTRODUCTION: Primary cultured hepatocytes are an important model for early safety evaluations of newly developed drugs. Many factors, however, hinder the wider applications of this technology, especially the difficulty to maintain these cells in long-term culture. To date, creating a stable supply of human or animal hepatocytes with proper hepatic function in vitro has not been achieved. Furthermore, frequently harvesting hepatocytes from living donors for use in culture is highly invasive and simply not feasible. We have previously reported that canine bone marrow-derived mesenchymal stem cells (cBMSCs) can be effectively converted into induced hepatocyte-like cells (iHep cells); however, these cells had reduced function in comparison to mature hepatocytes. In recent studies, spheroid formation-based three-dimensional (3D) culture has been noted to greatly increase hepatocyte function; nevertheless, no reports have described the use of this technology for culturing canine hepatocytes. Therefore, in this study, we aimed to establish a 3D spheroid culture using converted canine iHep cells to investigate their function as hepatocytes. METHODS: The iHep cells were prepared by introducing two genes, namely, the Forkhead box A1 (Foxa1) and hepatocyte nuclear factor 4 homeobox alpha (Hnf4α), into cBMSCs seeded onto an ultra-low attachment microplate to induce spheroid formation. Thereafter, the hepatic functions of these spheroids were evaluated using immunocytochemistry, as well as qualitative and quantitative PCR. RESULTS: Notably, albumin was observed in the iHep spheroids and the expression of hepatic genes, such as albumin and drug metabolism CYP genes, could also be detected. Another interesting finding was evident upon further comparing the quantified albumin gene and CYP2E1 gene expressions in the two-dimensional and three-dimensional culture systems; notably, a 100- to 200-fold increase in gene expression levels was observed in the three-dimensional spheroids when compared to those in conventional monolayers. CONCLUSIONS: Upon incorporating three-dimensional technology, we managed to achieve iHep spheroids that are closer in gene expression to living liver tissue compared to conventional monolayer cultures. Thus, we are one step closer to creating a sustainable in vitro hepatocyte model. Furthermore, we believe that this system is capable of maintaining the stable drug metabolizing capacity of canine hepatocytes in vitro, which might be useful in improving current drug assessment studies.

5.
Exp Hematol ; 40(6): 436-44, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22306296

RESUMEN

In utero transplantation (IUT) of human hematopoietic stem cells has been conducted in sheep, which are used as large animal models of human hematopoietic reconstitution and models for clinical IUT; however, the levels of engraftment have generally been low. Busulfan (BU), a myeloablative agent, is often administered to patients before hematopoietic stem cells transplantation to improve the engraftment. In this study, hematopoietic activity was evaluated in adult sheep after administering BU at different doses. Next, pregnant ewes were administered BU, and dams as well as their fetuses were evaluated, as BU readily crosses the sheep placenta. Then, the BU dose with the desired outcomes was selected and administered to pregnant ewes at 2 or 6 days before performing IUT using human cord blood CD34(+) cells. The engraftment was evaluated in recipients that underwent IUT in the presence or absence of BU. As a result, hematopoietic activity was safely and transiently suppressed in adult sheep treated with 5 to 7.5 mg/kg BU. BU crossed the sheep placenta, and fetal sheep were indeed conditioned by administering 3 mg/kg BU to pregnant ewes. Engraftment of human CD34(+) cells in fetal recipients was enhanced when IUT was carried out 6 days post-BU. Up to 3.3% engraftment levels (in terms of bone marrow colony-forming units) were achieved with the IUT of 0.72 to 2.4 million CD34(+) cells when BU was used. BU can be administered to pregnant ewes to effectively condition the fetal recipient for IUT with enhanced engraftment of donor cells.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Busulfano/administración & dosificación , Trasplante de Células Madre Hematopoyéticas , Modelos Animales , Animales , Antineoplásicos Fitogénicos/farmacocinética , Secuencia de Bases , Busulfano/farmacocinética , Cartilla de ADN , Femenino , Humanos , Intercambio Materno-Fetal , Placenta/metabolismo , Reacción en Cadena de la Polimerasa , Embarazo , Ovinos , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...