RESUMEN
Preclinical cardiovascular research relies heavily on non-invasive in-vivo echocardiography in mice and rats to assess cardiac function and morphology, since the complex interaction of heart, circulation, and peripheral organs are challenging to mimic ex-vivo. While n-numbers of annually used laboratory animals worldwide approach 200 million, increasing efforts are made by basic scientists aiming to reduce animal numbers in cardiovascular research according to the 3R's principle. The chicken egg is well-established as a physiological correlate and model for angiogenesis research but has barely been used to assess cardiac (patho-) physiology. Here, we tested whether the established in-ovo system of incubated chicken eggs interfaced with commercially available small animal echocardiography would be a suitable alternative test system in experimental cardiology. To this end, we defined a workflow to assess cardiac function in 8-13-day-old chicken embryos using a commercially available high resolution ultrasound system for small animals (Vevo 3100, Fujifilm Visualsonics Inc.) equipped with a high frequency probe (MX700; centre transmit: 50 MHz). We provide detailed standard operating procedures for sample preparation, image acquisition, data analysis, reference values for left and right ventricular function and dimensions, and inter-observer variabilities. Finally, we challenged incubated chicken eggs with two interventions well-known to affect cardiac physiology-metoprolol treatment and hypoxic exposure-to demonstrate the sensitivity of in-ovo echocardiography. In conclusion, in-ovo echocardiography is a feasible alternative tool for basic cardiovascular research, which can easily be implemented into the small animal research environment using existing infrastructure to replace mice and rat experiments, and thus, reduce use of laboratory animals according to the 3R principle.
Asunto(s)
Ecocardiografía , Corazón , Embrión de Pollo , Ratas , Ratones , AnimalesRESUMEN
A class of chaperones dubbed heat shock protein 70 (Hsp70) possesses high relevance in cancer diseases due to its cooperative activity with the well-established anticancer target Hsp90. However, Hsp70 is closely connected with a smaller heat shock protein, Hsp40, forming a formidable Hsp70-Hsp40 axis in various cancers, which serves as a suitable target for anticancer drug design. This review summarizes the current state and the recent developments in the field of (semi-)synthetic small molecule inhibitors directed against Hsp70 and Hsp40. The medicinal chemistry and anticancer potential of pertinent inhibitors are discussed. Since Hsp90 inhibitors have entered clinical trials but have exhibited severe adverse effects and drug resistance formation, potent Hsp70 and Hsp40 inhibitors may play a significant role in overcoming the drawbacks of Hsp90 inhibitors and other approved anticancer drugs.
Asunto(s)
Antineoplásicos , Proteínas del Choque Térmico HSP40 , Proteínas HSP70 de Choque Térmico , Chaperonas Moleculares , Antineoplásicos/química , Antineoplásicos/farmacología , Proteínas del Choque Térmico HSP40/antagonistas & inhibidores , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/metabolismo , Humanos , Diseño de FármacosRESUMEN
New N-alkylindole-substituted 2-(pyrid-3-yl)-acrylonitriles with putative kinase inhibitory activity and their (p-cymene)Ru(II) piano-stool complexes were prepared and tested for their antiproliferative efficacy in various cancer models. Some of the indole-based derivatives inhibited tumor cell proliferation at (sub-)micromolar concentrations with IC50 values below those of the clinically relevant multikinase inhibitors gefitinib and sorafenib, which served as positive controls. A focus was set on the investigation of drug mechanisms in HCT-116 p53-knockout colon cancer cells in order to evaluate the dependence of the test compounds on p53. Colony formation assays as well as experiments with tumor spheroids confirmed the excellent antineoplastic efficacy of the new derivatives. Their mode of action included an induction of apoptotic caspase-3/7 activity and ROS formation, as well as anti-angiogenic properties. Docking calculations with EGFR and VEGFR-2 identified the two 3-aryl-2-(pyrid-3-yl)acrylonitrile derivatives 2a and 2b as potential kinase inhibitors with a preferential activity against the VEGFR-2 tyrosine kinase. Forthcoming studies will further unveil the underlying mode of action of the promising new derivatives as well as their suitability as an urgently needed novel approach in cancer treatment.
Asunto(s)
Antineoplásicos , Inhibidores de Proteínas Quinasas , Tirfostinos , Humanos , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Proliferación Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Indoles/síntesis química , Indoles/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor , Tirfostinos/síntesis química , Tirfostinos/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Células HCT116RESUMEN
Colorectal cancer is the third most common cause of cancer-associated deaths due to a high recurrence rate and an increasing occurrence of resistance to established therapies. This highlights the importance of developing new chemotherapeutic agents. The current study focuses on cancer-specific targets such as apoptosis-inhibiting survivin, which distinguishes cancer cells from healthy tissue. A combination of pharmacophores of established anticancer agents to afford chimeric pleiotropic chemotherapeutic agents was tested on this cancer entity. We analysed the effects of the dual mode anticancer agents, animthioxam, brimbam, troxbam, and troxham, as well as their structural congeners suberoylanilide hydroxamic acid and combretastatin A-4 on human cancer cell lines. Their cytotoxicity was determined using the MTT assay, further techniques for detecting apoptotic events, cell cycle analyses, clonogenic and wound healing assays, immunostaining, histone deacetylase (HDAC) activity measurements, and Western blot analysis for the detection of survivin expression in HCT116 colon cancer cells. Molecular docking studies were conducted to assess potential molecular targets of the test compounds. The test compounds were found selectively cytotoxic toward cancer cells by inducing apoptosis. The metastatic potential was effectively reduced by disruption of the microtubular cytoskeleton. The test compounds were also proven to be general HDAC inhibitors and to lead to reduced survivin expression.
Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Inhibidores de Histona Desacetilasas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Ácidos Hidroxámicos/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Survivin/farmacología , Neoplasias Colorrectales/tratamiento farmacológicoRESUMEN
New medical treatments are urgently needed for advanced hepatocellular carcinoma (HCC). Recently, we showed the anticancer effects of novel thiophene-based kinase inhibitors. In this study, we further characterized the antineoplastic effects and modes of action of the two most promising inhibitors, Thio-Iva and Thio-Dam, and compared their effects with the clinically relevant multi-kinase inhibitor, sorafenib, in HCC cells. Crystal violet staining and real-time cell growth monitoring showed pronounced antiproliferative effects in Huh-7 and SNU-449 cells with IC50 values in the (sub-)micromolar range. Long-term incubation experiments revealed the reduced clonogenicity of Thio-Iva and Thio-Dam-treated HCC cells. LDH-release tests excluded cytotoxicity as an unspecific mode of action of the inhibitors, while flow cytometry analysis revealed a dose-dependent and pronounced G2/M phase cell cycle arrest and cyclin B1 suppression. Additionally, mitochondria-driven apoptosis was observed through the cytosolic increase of reactive oxygen species, a concomitant PARP cleavage, and caspase-3 induction. Both compounds were found to effectively inhibit the capillary tube formation of endothelial EA.hy926 cells in vitro, pointing towards additional antiangiogenic effects. Antiangiogenic and antineoplastic effects were confirmed in vivo by CAM assays. In summary, the thienyl-acrylonitrile derivatives, Thio-Iva and Thio-Dam, exert significant antineoplastic and antiangiogenic effects in HCC cells.
RESUMEN
Epigenetic mechanisms play an important role in the development and persistence of cancer, and histone deacetylase (HDAC) inhibitors are promising anticancer drugs targeting epigenetic modes. Efficient anticancer drugs for the treatment of castration-resistant prostate cancer (CRPC) are sought, and approved HDAC inhibitors have shown promising results on the one hand and severe drawbacks on the other hand. Hence, ways to break the drug resistance mechanisms of existing HDAC inhibitors as well as the design of new promising HDAC inhibitors which can overcome the disadvantages of the classic HDAC inhibitors are of great importance. In this work, HDAC inhibitors with the potential to become a mainstay for the treatment of CRPC in the future as well as suitable combination treatments of HDAC inhibitors with other anticancer drugs leading to considerable synergistic effects in treated CRPCs are discussed.
RESUMEN
Broxbam, also known as N-hydroxy-4-{1-methoxy-4-[4'-(3'-bromo-4',5'-dimethoxyphenyl)-oxazol-5'-yl]-2-phenoxy} butanamide, is a novel chimeric inhibitor that contains two distinct pharmacophores in its molecular structure. It has been previously demonstrated to inhibit the activity of histone deacetylases (HDAC) and tubulin polymerisation, two critical components required for cancer growth and survival. In the present study, the potential suitability of broxbam for the treatment of liver cancer was investigated. The effects of broxbam on cell proliferation and apoptosis, in addition to the underlying molecular mechanism of action, were first investigated in primary liver cancer cell lines Huh7, HepG2, TFK1 and EGI1. Real-time proliferation measurements made using the iCELLigence system and viable cell number counting following crystal violet staining) revealed that broxbam time- and dose-dependently reduced the proliferation of liver cancer cell lines with IC50 values <1 µM. In addition, a significant inhibition of the growth of hepatoblastoma microtumours on the chorioallantoic membranes (CAM) of fertilised chicken eggs by broxbam was observed according to results from the CAM assay, suggesting antineoplastic potency in vivo. Broxbam also exerted apoptotic effects through p53- and mitochondria-driven caspase-3 activation in Huh7 and HepG2 cells according to data from western blotting (p53 and phosphorylated p53), mitochondrial membrane potential measurements (JC-1 assay) and fluorometric capsase-3 measurements. Notably, no contribution of unspecific cytotoxic effects mediated by broxbam were observed from LDH-release measurements. HDAC1, -2, -4 and -6 expression was measured by western blotting and the HDAC inhibitory potency of broxbam was next evaluated using subtype-specific HDAC enzymatic assays, which revealed a largely pan-HDAC inhibitory activity with the most potent inhibition observed on HDAC6. Silencing HDAC6 expression in Huh7 cells led to a drop in the expression of the proliferation markers Ki-67 and E2F3, suggesting that HDAC6 inhibition by broxbam may serve a predominant role in their antiproliferative effects on liver cancer cells. Immunofluorescence staining of cytoskeletal proteins (α-tubulin & actin) of broxbam-treated HepG2 cells revealed a pronounced inhibition of tubulin polymerisation, which was accompanied by reduced cell migration as determined by wound healing scratch assays. Finally, data from zebrafish angiogenesis assays revealed marked antiangiogenic effects of broxbam in vivo, as shown by the suppression of subintestinal vein growth in zebrafish embryos. To conclude, the pleiotropic anticancer activities of this novel chimeric HDAC- and tubulin inhibitor broxbam suggest that this compound is a promising candidate for liver cancer treatment, which warrants further pre-clinical and clinical evaluation.
Asunto(s)
Antineoplásicos , Neoplasias Hepáticas , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Citoesqueleto/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Tubulina (Proteína)/metabolismo , Proteína p53 Supresora de Tumor , Pez Cebra/metabolismoRESUMEN
Angiogenesis describes the formation of new blood vessels from pre-existing vascular structures. While the most studied mode of angiogenesis is vascular sprouting, specific conditions or organs favor intussusception, i.e., the division or splitting of an existing vessel, as preferential mode of new vessel formation. In the present study, sustained (33-h) intravital microscopy of the vasculature in the chick chorioallantoic membrane (CAM) led to the hypothesis of a novel non-sprouting mode for vessel generation, which we termed "coalescent angiogenesis." In this process, preferential flow pathways evolve from isotropic capillary meshes enclosing tissue islands. These preferential flow pathways progressively enlarge by coalescence of capillaries and elimination of internal tissue pillars, in a process that is the reverse of intussusception. Concomitantly, less perfused segments regress. In this way, an initially mesh-like capillary network is remodeled into a tree structure, while conserving vascular wall components and maintaining blood flow. Coalescent angiogenesis, thus, describes the remodeling of an initial, hemodynamically inefficient mesh structure, into a hierarchical tree structure that provides efficient convective transport, allowing for the rapid expansion of the vasculature with maintained blood supply and function during development.
Asunto(s)
Membrana Corioalantoides , Neovascularización Fisiológica , Animales , Capilares , Morfogénesis , Neovascularización PatológicaRESUMEN
Blood flow pulsatility is an important determinant of macro- and microvascular physiology. Pulsatility is damped largely in the microcirculation, but the characteristics of this damping and the factors that regulate it have not been fully elucidated yet. Applying computational approaches to real microvascular network geometry, we examined the pattern of pulsatility damping and the role of potential damping factors, including pulse frequency, vascular viscous resistance, vascular compliance, viscoelastic behavior of the vessel wall, and wave propagation and reflection. To this end, three full rat mesenteric vascular networks were reconstructed from intravital microscopic recordings, a one-dimensional (1D) model was used to reproduce pulsatile properties within the network, and potential damping factors were examined by sensitivity analysis. Results demonstrate that blood flow pulsatility is predominantly damped at the arteriolar side and remains at a low level at the venular side. Damping was sensitive to pulse frequency, vascular viscous resistance and vascular compliance, whereas viscoelasticity of the vessel wall or wave propagation and reflection contributed little to pulsatility damping. The present results contribute to our understanding of mechanical forces and their regulation in the microcirculation.
Asunto(s)
Arteriolas/fisiología , Mesenterio/irrigación sanguínea , Microcirculación , Modelos Cardiovasculares , Flujo Pulsátil , Circulación Esplácnica , Vénulas/fisiología , Animales , Microscopía Intravital , Masculino , Ratas Wistar , Estrés Mecánico , Factores de Tiempo , Resistencia VascularRESUMEN
The development of new anticancer drugs is necessary in order deal with the disease and with the drawbacks of currently applied drugs. Epigenetic dysregulations are a central hallmark of cancerogenesis and histone deacetylases (HDACs) emerged as promising anticancer targets. HDAC inhibitors are promising epigenetic anticancer drugs and new HDAC inhibitors are sought for in order to obtain potent drug candidates. The new HDAC inhibitor SF5-SAHA was synthesized and analyzed for its anticancer properties. The new compound SF5-SAHA showed strong inhibition of tumor cell growth with IC50 values similar to or lower than that of the clinically applied reference compound vorinostat/SAHA (suberoylanilide hydroxamic acid). Target specific HDAC inhibition was demonstrated by Western blot analyses. Unspecific cytotoxic effects were not observed in LDH-release measurements. Pro-apoptotic formation of reactive oxygen species (ROS) and caspase-3 activity induction in prostate carcinoma and hepatocellular carcinoma cell lines DU145 and Hep-G2 seem to be further aspects of the mode of action. Antiangiogenic activity of SF5-SAHA was observed on chorioallantoic membranes of fertilized chicken eggs (CAM assay). The presence of the pentafluorothio-substituent of SF5-SAHA increased the antiproliferative effects in both solid tumor and leukemia/lymphoma cell models when compared with its parent compound vorinostat. Based on this preliminary study, SF5-SAHA has the prerequisites to be further developed as a new HDAC inhibitory anticancer drug candidate.
RESUMEN
New chimeric inhibitors targeting the epidermal growth factor (EGFR) and histone deacetylases (HDACs) were synthesized and tested for antineoplastic efficiency in solid cancer (prostate and hepatocellular carcinoma) and leukemia/lymphoma cell models. The most promising compounds, 3BrQuin-SAHA and 3ClQuin-SAHA, showed strong inhibition of tumor cell growth at one-digit micromolar concentrations with IC50 values similar to or lower than those of clinically established reference compounds SAHA and gefitinib. Target-specific EGFR and HDAC inhibition was demonstrated in cell-free kinase assays and Western blot analyses, while unspecific cytotoxic effects could not be observed in LDH release measurements. Proapoptotic formation of reactive oxygen species and caspase-3 activity induction in PCa and HCC cell lines DU145 and Hep-G2 seem to be further aspects of the modes of action. Antiangiogenic potency was recognized after applying the chimeric inhibitors on strongly vascularized chorioallantoic membranes of fertilized chicken eggs (CAM assay). The novel combination of two drug pharmacophores against the EGFR and HDACs in one single molecule was shown to have pronounced antineoplastic effects on tumor growth in both solid and leukemia/lymphoma cell models. The promising results merit further investigations to further decipher the underlying modes of action of the novel chimeric inhibitors and their suitability for new clinical approaches in tumor treatment.
Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Receptores ErbB/antagonistas & inhibidores , Células Hep G2 , Humanos , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Linfoma/tratamiento farmacológico , Linfoma/metabolismoRESUMEN
New 2-(thien-2-yl)-acrylonitriles with putative kinase inhibitory activity were prepared and tested for their antineoplastic efficacy in hepatoma models. Four out of the 14 derivatives were shown to inhibit hepatoma cell proliferation at (sub-)micromolar concentrations with IC50 values below that of the clinically relevant multikinase inhibitor sorafenib, which served as a reference. Colony formation assays as well as primary in vivo examinations of hepatoma tumors grown on the chorioallantoic membrane of fertilized chicken eggs (CAM assay) confirmed the excellent antineoplastic efficacy of the new derivatives. Their mode of action included an induction of apoptotic capsase-3 activity, while no contribution of unspecific cytotoxic effects was observed in LDH-release measurements. Kinase profiling of cancer relevant protein kinases identified the two 3-aryl-2-(thien-2-yl)acrylonitrile derivatives 1b and 1c as (multi-)kinase inhibitors with a preferential activity against the VEGFR-2 tyrosine kinase. Additional bioinformatic analysis of the VEGFR-2 binding modes by docking and molecular dynamics calculations supported the experimental findings and indicated that the hydroxy group of 1c might be crucial for its distinct inhibitory potency against VEGFR-2. Forthcoming studies will further unveil the underlying mode of action of the promising new derivatives as well as their suitability as an urgently needed novel approach in HCC treatment.
Asunto(s)
Acrilonitrilo/química , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Tiofenos/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proliferación Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tiofenos/químicaRESUMEN
The palliative treatment options for advanced hepatocellular carcinoma (HCC) are currently not satisfying. The use of photodynamic therapy (PDT) has gained much attention in the treatment of several cancers and has been approved as an alternative approach in treating different forms of cancers. We investigated for the first time the PDT effects of tetra-triethyleneoxysulfonyl zinc phthalocyanine (ZnPc) on HCC cells. Photoactivation of ZnPc loaded HCC cells resulted in a dose- and time- dependent growth inhibitory effect, the production of reactive oxygen species (ROS), induced cytotoxic effects and the induction of apoptosis in the investigated HCC cells (HepG2 and Huh-7). ZnPc-PDT inhibited the proliferation of HCC cells by up to 90% accompanied by a down-regulation of the activity and expression of the proliferation relevant mitogen-activated protein kinase (MAPK)-protein extracellular signal-regulated (ERK ½). Moreover, an up-regulation of proapoptotic BAX and a down-regulation of antiapoptotic B-cell lymphoma 2 (Bcl-2) expressions were observed with both proteins implicated in mitochondria-driven apoptosis. The investigation of the anti-tumor effect of ZnPc-PDT in vivo using the chicken chorioallantoic membrane assays (CAM) revealed a strong reduction in the size of HCC tumor plagues >80% after 4 days of PDT-treatment without affecting the survival of the developing embryo. The pronounced anti-proliferative and anti-tumor effects of ZnPc-PDT both in vitro and in vivo render ZnPc-PDT as a promising palliative treatment option for hepatocellular carcinoma.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Indoles/farmacología , Compuestos Organometálicos/farmacología , Fármacos Fotosensibilizantes/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Humanos , Indoles/química , Indoles/uso terapéutico , Isoindoles , Neoplasias Hepáticas/tratamiento farmacológico , Mitocondrias/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Compuestos Organometálicos/química , Compuestos Organometálicos/uso terapéutico , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Compuestos de Zinc , Proteína X Asociada a bcl-2/metabolismoRESUMEN
OBJECTIVE: In this study, we examined the impact of gap junction blockade on chick chorioallantoic membrane microvessels. METHODS: Expression of Cx37, Cx40/42, and Cx43 in chick chorioallantoic membrane tissue was studied by PCR, Western blot, and confocal immunofluorescence microscopy. Vessel diameter changes occurring under gap junction blockade with carbenoxolone (175 µmol/L), palmitoleic acid (100 µmol/L), 43 GAP27 (1 mmol/L) were analyzed by intravital microscopy. To analyze vascular tone, chick chorioallantoic membrane vessels were exposed to a vasodilator cocktail consisting of acetylcholine (10 µmol/L), adenosine (100 µmol/L), papaverine (200 µmol/L), and sodium nitroprusside (10 µmol/L). RESULTS: In chick chorioallantoic membrane lysates, Western blot analysis revealed the expression of Cx40 and Cx43. Immunofluorescence in intact chick chorioallantoic membrane vasculature showed only Cx43, limited to arterial vessel walls. Upon gap junction blockade (3 hours) arterial and venous diameters decreased to 0.50 ± 0.03 and 0.36 ± 0.06 (carbenoxolone), 0.72 ± 0.08 and 0.63 ± 0.15 (palmitoleic acid) and 0.77 ± 0.004 and 0.58 ± 0.05 (GAP27), relative to initial values. Initially, diameter decrease was dominated by increasing vascular tone. After 6 hours, however, vessel tone was reduced, suggesting structural network remodeling. CONCLUSIONS: Our findings suggest a major role for connexins in mediating acute and chronic diameter changes in developing vascular networks.
Asunto(s)
Proteínas Aviares/metabolismo , Membrana Corioalantoides/irrigación sanguínea , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Microvasos/metabolismo , Animales , Embrión de PolloRESUMEN
Chimeric inhibitors, which merge two drug pharmacophores in a single molecule have become a prominent approach for the design of novel anticancer compounds. Here, we examined animacroxam, which combines histone deacetylase (HDAC) inhibitory and cytoskeleton-interfering pharmacophores, in testicular germ cell tumors (TGCT). The effectiveness of animacroxam was compared to that of the commonly applied chemotherapeutic cisplatin as well as the clinically approved HDAC inhibitor vorinostat. The antineoplastic and antiangiogenic effects of animacroxam on TGCT in vivo were assessed through exploratory animal studies and a modified chorioallantoic membrane assay, revealing that animacroxam has significant antitumor activity in TGCT. A novel positron emission tomography/MR-imaging approach was applied to determine tumor volume and glucose [2-fluoro-2-deoxy-d-glucose (18F-FDG)] uptake in TGCT tumors, revealing reduced glucose uptake in animacroxam-treated TGCTs and showing a dose-dependent suppression of glycolytic enzymes, which led to a breakdown in glycolytic energy production. Furthermore, the observed antiangiogenic effects of animacroxam were related to its ability to inhibit endothelial cell-cell communication, as the expression of gap junction-forming connexin 43 was strongly suppressed, and gap-junctional intercellular mass transport was reduced. Our data suggest that the chimeric HDAC inhibitor animacroxam may become a promising candidate for the treatment of solid cancers and may serve as an interesting alternative to platinum-based therapies.
Asunto(s)
Antineoplásicos/farmacología , Cinamatos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Imidazoles/farmacología , Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Neoplasias de Células Germinales y Embrionarias/metabolismo , Neoplasias de Células Germinales y Embrionarias/patología , Neoplasias Testiculares/tratamiento farmacológico , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Photodynamic therapy (PDT) has emerged as an effective and minimally invasive cancer treatment modality. In the present study, two novel phthalocyanines, tetratriethyleneoxysulfonyl substituted zinc phthalocyanine (ZnPc) and dihydroxy2,9(10),16(17),23(24)tetrakis(4,7,10trioxaundecan1sulfonyl) silicon phthalocyanine (Pc32), were investigated as photosensitizers (PS) for PDT of cholangiocarcinoma (CC). ZnPc showed a pronounced dosedependent and predominantly cytoplasmic accumulation in EGI1 and TFK1 CC cell lines. Pc32 also accumulated in the CC cells, but this was less pronounced. Without photoactivation, the PS did not exhibit any antiproliferative or cytotoxic effects. Upon photoactivation, ZnPc induced the formation of reactive oxygen species (ROS) and immediate phototoxicity, leading to a dosedependent decrease in cell proliferation, and an induction of mitochondriadriven apoptosis and cell cycle arrest of EGI1 and TFK1 cells. Although photoactivated Pc32 also induced ROS formation in the two cell lines, the extent was less marked, compared with that induced by ZnPcPDT, and pronounced antipoliferative effects occurred only in the less differentiated EGI1 cells, whereas the more differentiated TFK1 cells did not show sustained growth inhibition upon Pc32PDT induction. In vivo examinations on the antiangiogenic potency of the novel PS were performed using chorioallantoic membrane (CAM) assays, which revealed reduced angiogenic sprouting with a concomitant increase in nonperfused regions and degeneration of the vascular network of the CAM following induction with ZnPcPDT only. The study demonstrated the pronounced antiproliferative and antiangiogenic potency of ZnPc as a novel PS for PDT, meriting further elucidation as a promising PS for the photodynamic treatment of CC.
Asunto(s)
Colangiocarcinoma/tratamiento farmacológico , Indoles/uso terapéutico , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Silicio/uso terapéutico , Zinc/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Pollos , Colangiocarcinoma/patología , Membrana Corioalantoides/efectos de los fármacos , Membrana Corioalantoides/metabolismo , Humanos , Indoles/farmacología , Isoindoles , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Silicio/farmacología , Zinc/farmacologíaRESUMEN
Novel approaches for the medical treatment of advanced solid tumors, including testicular germ cell tumors (TGCT), are desperately needed. Especially, TGCT patients not responding to cisplatin-based therapy need therapeutic alternatives, as there is no effective medical treatment available for this particular subgroup. Here, we studied the suitability of the novel dual-mode compound animacroxam for TGCT treatment. Animacroxam consists of an HDAC-inhibitory hydroxamate moiety coupled to a 4,5-diarylimidazole with inherent cytoskeleton disrupting potency. Animacroxam revealed pronounced antiproliferative, cell-cycle arresting, and apoptosis-inducing effects in TGCT cell lines with different cisplatin sensitivities. The IC50 values of animacroxam ranged from 0.22 to 0.42 µmol/L and were not correlated to the cisplatin sensitivity of the tumor cells. No unspecific cytotoxicity of animacroxam was observed in either cisplatin-sensitive or resistant TGCT cells, even at doses as high as 10 µmol/L. Furthermore, animacroxam induced the formation of actin stress fibers in cancer cells, thereby confirming the cytoskeleton-disrupting and antimigratory properties of its imidazole moiety. When compared with the clinically established HDAC inhibitor vorinostat, the novel dual-mode compound animacroxam exhibited superior antitumoral efficacy in vitro Animacroxam also reduced the tumor size of TGCT tumors in vivo, as evidenced by performing xenograft experiments on tumor bearing chorioallantoic membranes of fertilizes chicken eggs (CAM assay). The in vivo experiments also revealed a very good tolerability of the compound, and hence, animacroxam may be a promising candidate for innovative treatment of TGCT in general and the more so for platinum-insensitive or refractory TGCT. Mol Cancer Ther; 16(11); 2364-74. ©2017 AACR.
Asunto(s)
Cinamatos/administración & dosificación , Citoesqueleto/efectos de los fármacos , Inhibidores de Histona Desacetilasas/administración & dosificación , Imidazoles/administración & dosificación , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Neoplasias Testiculares/tratamiento farmacológico , Citoesqueleto de Actina/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cinamatos/química , Cisplatino/administración & dosificación , Resistencia a Antineoplásicos/genética , Histona Desacetilasas/genética , Humanos , Imidazoles/química , Ratones , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/patología , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Prostate cancer (PCa) is an international health problem and search for its effective treatment is in progress. Punicalagin (PN), polyphenol from pomegranate fruit, is known to exhibit potent anticancer activity in lung, breast and cervical cells. However, there is paucity of information on its effect in PCa. This study evaluated anti-proliferative effects of PN and its effects on extrinsic pathway of apoptosis in PCa cells, and angiogenesis in chicken chorioallantoic membrane (CAM). Antioxidant activities of PN were determined by 2,2-diphenyl-1-picryhydrazyl (DPPH) radical scavenging and inhibition of lipid peroxidation (LPO) methods. PCa (PC-3 and LNCaP) and normal prostate (BPH-1) cells were cultured and treated with PN (10, 50 and 100 µM). Cytotoxicity and viability effects of PN were determined by lactate dehydrogenase (LDH) and XTT assays, respectively. Antiangiogenic effects were measured using CAM assay, while apoptosis was assessed by DNA fragmentation, enrichment factor by Cell Death Detection ELISA kit and expressions of caspases-3 and -8. Results showed that PN (10-200 µM) significantly scavenged DPPH and inhibited LPO in a concentration-dependent manner. Furthermore, PN (10-100 µM) concentration-dependently inhibited viability in PC-3 and LNCaP, while viability in BPH-1 was insignificantly affected. PN had low toxicity on cells in vitro at concentrations tested. Also, PN (100 µM) increased enrichment factor in PC-3 (2.34 ± 0.05) and LNCaP (2.31 ± 0.26) relative to control (1.00 ± 0.00). In addition, PN (50 µM) decreased the network of vessels in CAM, suggesting its anti-angiogenic effect. Moreso, PN increased the expressions of caspases-3 and -8 in PC-3. Overall, PN exerts anti-proliferative activity in PCa cells via induction of apoptosis and anti-angiogenic effect.
Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Taninos Hidrolizables/farmacología , Lythraceae/química , Extractos Vegetales/química , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Caspasa 3/análisis , Caspasa 8/análisis , Línea Celular Tumoral , Fragmentación del ADN/efectos de los fármacos , Frutas/química , Frutas/metabolismo , Humanos , Taninos Hidrolizables/química , Taninos Hidrolizables/aislamiento & purificación , Peroxidación de Lípido/efectos de los fármacos , Lythraceae/metabolismo , Masculino , Neovascularización Fisiológica/efectos de los fármacos , Polifenoles/química , Ratas , Ratas WistarRESUMEN
BACKGROUND: Our previous studies showed that fruit methanol extract from Xylopia aethiopica (MEXA) exhibited antiproliferative activity in human cervical cancer cells via the induction of apoptosis. The present study was designed to assess the antiproliferative, antiangiogenic and antioxidant effects of MEXA on prostate cancer (PCa) cells (PC-3 and LNCaP). METHODS: PC-3 and LNCaP cells were cultured and treated with MEXA (10, 50 and 100 µg/mL). The sodium 3'-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis (4-methoxy-6-nitro) benzene sulfonic acid hydrate (XTT) and lactate dehydrogenase (LDH) assays were used to evaluate cell viability and cytotoxicity, respectively. DNA fragmentation was determined by cell death detection ELISA plus, and angiogenesis was assessed by chicken chorioallantoic membrane (CAM) assay. The antioxidant activities of MEXA were determined by DPPH and hydroxyl (OH) radicals' scavenging methods as well as through the inhibition of lipid peroxidation (LPO) in rats' liver homogenate. RESULTS: MEXA at 100, 250 and 500 µg/mL scavenged DPPH by 48%, 62%, 70% and OH radical by 39%, 58%, 67%, respectively. MEXA significantly (p<0.05) inhibited LPO in a concentration-dependent manner. In addition, MEXA had antiproliferative effects on PC-3 and LNCaP with IC50 of 62.1 and 73.6 µg/mL, respectively, at 96 h. The LDH assay showed that MEXA had low toxicity in vitro at its IC50 values. The extent of DNA fragmentation by MEXA showed higher values in PC-3 and LNCaP, suggesting the possible induction of apoptosis. In contrast, MEXA did not affect the network of vessels in CAM, thus lacking anti-angiogenic property. CONCLUSIONS: These findings suggest that MEXA induces antiproliferative activity in PCa cells through a mechanism that involves apoptosis. Therefore, MEXA may be a potential therapeutic agent for PCa.