Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Glia ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829008

RESUMEN

As one of the top causes of blindness worldwide, glaucoma leads to diverse optic neuropathies such as degeneration of retinal ganglion cells (RGCs). It is widely accepted that the level of intraocular pressure (IOP) is a major risk factor in human glaucoma, and reduction of IOP level is the principally most well-known method to prevent cell death of RGCs. However, clinical studies show that lowering IOP fails to prevent RGC degeneration in the progression of glaucoma. Thus, a comprehensive understanding of glaucoma pathological process is required for developing new therapeutic strategies. In this study, we provide functional and histological evidence showing that optic nerve defects occurred before retina damage in an ocular hypertension glaucoma mouse model, in which oligodendroglial lineage cells were responsible for the subsequent neuropathology. By treatment with clemastine, an Food and Drug Administration (FDA)-approved first-generation antihistamine medicine, we demonstrate that the optic nerve and retina damages were attenuated via promoting oligodendrocyte precursor cell (OPC) differentiation and enhancing remyelination. Taken together, our results reveal the timeline of the optic neuropathies in glaucoma and highlight the potential role of oligodendroglial lineage cells playing in its treatment. Clemastine may be used in future clinical applications for demyelination-associated glaucoma.

2.
Sci Adv ; 10(6): eadk3931, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38324685

RESUMEN

Maldevelopment of oligodendroglia underlies neural developmental disorders such as leukodystrophy. Precise regulation of the activity of specific transcription factors (TFs) by various posttranslational modifications (PTMs) is required to ensure proper oligodendroglial development and myelination. However, the role of ubiquitination of these TFs during oligodendroglial development is yet unexplored. Here, we find that RNF220, a known leukodystrophy-related E3 ubiquitin ligase, is required for oligodendroglial development. RNF220 depletion in oligodendrocyte lineage cells impedes oligodendrocyte progenitor cell proliferation, differentiation, and (re)myelination, which consequently leads to learning and memory defects. Mechanistically, RNF220 targets Olig1/2 for K63-linked polyubiquitination and stabilization during oligodendroglial development. Furthermore, in a knock-in mouse model of leukodystrophy-related RNF220R365Q mutation, the ubiquitination and stabilization of Olig proteins are deregulated in oligodendroglial cells. This results in pathomimetic oligodendroglial developmental defects, impaired myelination, and abnormal behaviors. Together, our evidence provides an alternative insight into PTMs of oligodendroglial TFs and how this essential process may be implicated in the etiology of leukodystrophy.


Asunto(s)
Enfermedades Desmielinizantes , Neurogénesis , Ratones , Animales , Diferenciación Celular/genética , Ubiquitinación , Oligodendroglía/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Enfermedades Desmielinizantes/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Trends Neurosci ; 46(7): 581-596, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37183154

RESUMEN

Adult oligodendrocyte precursor cells (aOPCs), transformed from fetal OPCs, are idiosyncratic neuroglia of the central nervous system (CNS) that are distinct in many ways from other glial cells. OPCs have been classically studied in the context of their remyelinating capacity. Recent studies, however, revealed that aOPCs not only contribute to post-lesional remyelination but also play diverse crucial roles in multiple neurological diseases. In this review we briefly present the physiology of aOPCs and summarize current knowledge of the beneficial and detrimental roles of aOPCs in different CNS diseases. We discuss unique features of aOPC death, reactivity, and changes during senescence, as well as aOPC interactions with other glial cells and pathological remodeling during disease. Finally, we outline future perspectives for the study of aOPCs in brain pathologies which may instigate the development of aOPC-targeting therapeutic strategies.


Asunto(s)
Células Precursoras de Oligodendrocitos , Remielinización , Células Precursoras de Oligodendrocitos/fisiología , Sistema Nervioso Central , Neuroglía , Remielinización/fisiología , Oligodendroglía/fisiología , Diferenciación Celular/fisiología , Vaina de Mielina/fisiología
4.
Neuron ; 111(2): 190-201.e8, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36384142

RESUMEN

Oligodendrocyte precursor cells (OPCs) undergo an extensive and coordinated migration in the developing CNS, using the pre-formed scaffold of developed blood vessels as their physical substrate for migration. While OPC association with vasculature is critical for dispersal, equally important for permitting differentiation and proper myelination of target axons is their appropriate and timely detachment, but regulation of this process remains unclear. Here we demonstrate a correlation between the developmental formation of astrocytic endfeet on vessels and the termination of OPC perivascular migration. Ex vivo and in vivo live imaging shows that astrocyte endfeet physically displace OPCs from vasculature, and genetic abrogation of endfoot formation hinders both OPC detachment from vessels and subsequent differentiation. Astrocyte-derived semaphorins 3a and 6a act to repel OPCs from blood vessels at the cessation of their perivascular migration and, in so doing, permit subsequent OPC differentiation by insulating them from a maturation inhibitory endothelial niche.


Asunto(s)
Células Precursoras de Oligodendrocitos , Astrocitos , Oligodendroglía/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología
5.
Mol Psychiatry ; 27(12): 5154-5166, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36131044

RESUMEN

Although the link of white matter to pathophysiology of schizophrenia is documented, loss of myelin is not detected in patients at the early stages of the disease, suggesting that pathological evolution of schizophrenia may occur before significant myelin loss. Disrupted-in-schizophrenia-1 (DISC1) protein is highly expressed in oligodendrocyte precursor cells (OPCs) and regulates their maturation. Recently, DISC1-Δ3, a major DISC1 variant that lacks exon 3, has been identified in schizophrenia patients, although its pathological significance remains unknown. In this study, we detected in schizophrenia patients a previously unidentified pathological phenotype of OPCs exhibiting excessive branching. We replicated this phenotype by generating a mouse strain expressing DISC1-Δ3 gene in OPCs. We further demonstrated that pathological OPCs, rather than myelin defects, drive the onset of schizophrenic phenotype by hyperactivating OPCs' Wnt/ß-catenin pathway, which consequently upregulates Wnt Inhibitory Factor 1 (Wif1), leading to the aberrant synaptic formation and neuronal activity. Suppressing Wif1 in OPCs rescues synaptic loss and behavioral disorders in DISC1-Δ3 mice. Our findings reveal the pathogenetic role of OPC-specific DISC1-Δ3 variant in the onset of schizophrenia and highlight the therapeutic potential of Wif1 as an alternative target for the treatment of this disease.


Asunto(s)
Células Precursoras de Oligodendrocitos , Esquizofrenia , Animales , Humanos , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/genética , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología , Oligodendroglía/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/patología , Modelos Animales de Enfermedad
6.
Brain ; 145(12): 4474-4488, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35788280

RESUMEN

Alzheimer's disease is a neurodegenerative disorder that causes age-dependent neurological and cognitive declines. The treatments for Alzheimer's disease pose a significant challenge, because the mechanisms of disease are not being fully understood. Malfunction of the blood-brain barrier is increasingly recognized as a major contributor to the pathophysiology of Alzheimer's disease, especially at the early stages of the disease. However, the underlying mechanisms remain poorly characterized, while few molecules can directly target and improve blood-brain barrier function in the context of Alzheimer's disease. Here, we showed dysfunctional blood-brain barrier in patients with Alzheimer's disease reflected by perivascular accumulation of blood-derived fibrinogen in the hippocampus and cortex, accompanied by decreased tight junction proteins Claudin-5 and glucose transporter Glut-1 in the brain endothelial cells. In the APPswe/PS1dE9 (APP/PS1) mouse model of Alzheimer's disease, blood-brain barrier dysfunction started at 4 months of age and became severe at 9 months of age. In the cerebral microvessels of APP/PS1 mice and amyloid-ß-treated brain endothelial cells, we found suppressed Wnt/ß-catenin signalling triggered by an increase of GSK3ß activation, but not an inhibition of the AKT pathway or switching to the Wnt/planar cell polarity pathway. Furthermore, using our newly developed optogenetic tool for controlled regulation of LRP6 (upstream regulator of the Wnt signalling) to activate Wnt/ß-catenin pathway, blood-brain barrier malfunction was restored by preventing amyloid-ß-induced brain endothelial cells impairments and promoting the barrier repair. In conclusion, targeting LRP6 in the Wnt/ß-catenin pathway in the brain endothelium can alleviate blood-brain barrier malfunction induced by amyloid-ß, which may be a potential treatment strategy for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , beta Catenina , Péptidos beta-Amiloides/metabolismo , Vía de Señalización Wnt , Modelos Animales de Enfermedad , Ratones Transgénicos
7.
BMC Med Educ ; 22(1): 514, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778724

RESUMEN

BACKGROUND: Due to insufficient basic medical knowledge and inappropriate learning strategies, students of 8-year medical programme encountered many obstacles in the initial stage of basic medicine learning. This study was to determine whether a prerequisite course can improve basic medicine learning performance and adjust learning strategies to adapt to basic medicine learning. METHODS: A prerequisite course of histology was constructed by a two-round modified Delphi study. Seventy-four students of 8-year medical programme were subjected to two groups: the prerequisite course group (PC group) and non-prerequisite course group (NPC group). The PC group take part in the prerequisite course by student-centred blended learning approach but NPC group not. The PC and NPC group underwent requisite histology teaching activities after prerequisite course. Examination of the prerequisite course and requisite histology course were carried out. Effect of the prerequisite course was evaluated by an empirical method using a questionnaire-based approach. RESULTS: The results of examinations showed students' scores of the PC group were significantly higher than those of students of NPC group in both prerequisite course and requisite histology examinations (P < 0.05). The results of questionnaires showed that students were satisfied with the prerequisite course, which was beneficial for uptake in medical knowledge, cultivation of clinical thinking and scientific research ability and adaptation in learning strategies (P < 0.01). Furthermore, our prerequisite course is conducive to subsequent courses learning, especially for pathology (P < 0.01). CONCLUSION: Our prerequisite course could effectively supplement knowledge of basic medicine, improve clinical thinking and scientific research ability and adapt their learning strategies. These findings suggest that the prerequisite course is useful and should be introduced in medical curriculum reform at the early stages of basic medical training.


Asunto(s)
Aprendizaje , Estudiantes , China , Humanos , Encuestas y Cuestionarios
8.
Ecotoxicol Environ Saf ; 238: 113589, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35525116

RESUMEN

Air pollution remains one of the major health threats around the world. Compared to adults, foetuses and infants are more vulnerable to the effects of environmental toxins. Maternal exposure to air pollution causes several adverse birth outcomes and may lead to life-long health consequences. Given that a healthy intrauterine environment is a critical factor for supporting normal foetal brain development, there is a need to understand how prenatal exposure to air pollution affects brain health and results in neurological dysfunction. This review summarised the current knowledge on the adverse effects of prenatal air pollution exposure on early life neurodevelopment and subsequent impairment of cognition and behaviour in childhood, as well as the potential of early-onset neurodegeneration. While inflammation, oxidative stress, and endoplasmic reticulum are closely involved in the physiological response, sex differences also occur. In general, males are more susceptible than females to the adverse effect of in-utero air pollution exposure. Considering the evidence provided in this review and the rising concerns of global air pollution, any efforts to reduce pollutant emission or exposure will be protective for the next generation.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adulto , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Cognición , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Lactante , Masculino , Exposición Materna/efectos adversos , Material Particulado/toxicidad , Embarazo
9.
J Biomed Res ; 36(5): 343-352, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35578762

RESUMEN

Oligodendrocyte lineage cells (OL-lineage cells) are a cell population that are crucial for mammalian central nervous system (CNS) myelination. OL-lineage cells go through developmental stages, initially differentiating into oligodendrocyte precursor cells (OPCs), before becoming immature oligodendrocytes, then mature oligodendrocytes (OLs). While the main function of cell lineage is in myelin formation, and increasing number of studies have turned to explore the immunological characteristics of these cells. Initially, these studies focused on discovering how OPCs and OLs are affected by the immune system, and then, how these immunological changes influence the myelination process. However, recent studies have uncovered another feature of OL-lineage cells in our immune systems. It would appear that OL-lineage cells also express immunological factors such as cytokines and chemokines in response to immune activation, and the expression of these factors changes under various pathologic conditions. Evidence suggests that OL-lineage cells actually modulate immune functions. Indeed, OL-lineage cells appear to play both "victim" and "agent" in the CNS which raises a number of questions. Here, we summarize immunologic changes in OL-lineage cells and their effects, as well as consider OL-lineage cell changes which influence immune cells under pathological conditions. We also describe some of the underlying mechanisms of these changes and their effects. Finally, we describe several studies which use OL-lineage cells as immunotherapeutic targets for demyelination diseases.

10.
Neuron ; 109(19): 3104-3118.e6, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34390652

RESUMEN

Oligodendrocyte (OL) maturation arrest in human white matter injury contributes significantly to the failure of endogenous remyelination in multiple sclerosis (MS) and newborn brain injuries such as hypoxic ischemic encephalopathy (HIE) that cause cerebral palsy. In this study, we identify an oligodendroglial-intrinsic factor that controls OL maturation specifically in the setting of injury. We find a requirement for the ring finger protein Rnf43 not in normal development but in neonatal hypoxic injury and remyelination in the adult mammalian CNS. Rnf43, but not the related Znrf3, is potently activated by Wnt signaling in OL progenitor cells (OPCs) and marks activated OPCs in human MS and HIE. Rnf43 is required in an injury-specific context, and it promotes OPC differentiation through negative regulation of Wnt signal strength in OPCs at the level of Fzd1 receptor presentation on the cell surface. Inhibition of Fzd1 using UM206 promotes remyelination following ex vivo and in vivo demyelinating injury.


Asunto(s)
Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Oligodendroglía/patología , Ubiquitina-Proteína Ligasas/genética , Animales , Lesiones Encefálicas/metabolismo , Enfermedades Desmielinizantes/genética , Receptores Frizzled/efectos de los fármacos , Receptores Frizzled/genética , Humanos , Ratones , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/fisiología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Remielinización/efectos de los fármacos , Remielinización/genética , Células Madre/metabolismo , Células Madre/patología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Vía de Señalización Wnt
11.
Front Mol Neurosci ; 14: 657514, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122008

RESUMEN

Astrocytes play a crucial role in the maintenance of the normal functions of the Central Nervous System (CNS). During the pathogenesis of neurodegenerative diseases, astrocytes undergo morphological and functional remodeling, a process called reactive astrogliosis, in response to the insults to the CNS. One of the key aspects of the reactive astrocytes is the change in the expression and function of connexins. Connexins are channel proteins that highly expressed in astrocytes, forming gap junction channels and hemichannels, allowing diffusional trafficking of small molecules. Alterations of astrocytic connexin expression and function found in neurodegenerative diseases have been shown to affect the disease progression by changing neuronal function and survival. In this review, we will summarize the role of astroglial connexins in neurodegenerative diseases including Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Also, we will discuss why targeting connexins can be a plausible therapeutic strategy to manage these neurodegenerative diseases.

12.
Adv Sci (Weinh) ; 8(16): e2101181, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34155833

RESUMEN

Astrocyte maldevelopment is implicated in various neuropsychiatric diseases associated with early life stress. However, the underlying astrocytopathy mechanism, which can result in the psychiatric symptoms, remains unclear. In this study, it is shown that a reduced oligodendrocyte precursor cell (OPC) population accompanies hindered hippocampal astrocytic development in an improved parental isolation mouse model, and that the loss of OPCs suppresses astrocytic network formation and activity. It is further demonstrated that OPC-derived Wnt ligands, in particular Wnt7b, are required for Wnt/ß-catenin pathway-mediated astrocytic development and subsequent effects related to neuronal function. In addition, focal replenishment of Wnt7a/b is sufficient to rescue astrocytic maldevelopment. These results elucidate a Wnt-paracrine-dependent but myelin-independent role of OPCs in regulating astrocytic development, which provides a unique insight into the astrocytopathy mechanism in early life stress, and can be implicated in the pathogenesis of human early life stress-related neuropsychiatric disorders.


Asunto(s)
Astrocitos/patología , Células Precursoras de Oligodendrocitos/patología , Estrés Psicológico/patología , Animales , Animales Recién Nacidos , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Ratones
13.
Viruses ; 13(3)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809239

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is a highly infectious and pathogenic virus causing high morbidity and mortality, especially in newborn piglets. There remain problems with contemporary PEDV vaccines, in part because of the rapid variation of PEDV, poor conferred immunity, and numerous side effects. The ability to produce PEDV-neutralizing antibodies suggests that we may be able to increase the success rate of PEDV prevention in piglets using these antibodies. In this study, we produced an anti-PEDV S protein monoclonal antibody (anti-PEDV mAb-2) that neutralized PEDV-CV777 (a G1 strain), PEDV-SDSX16 and PEDV-Aj1102 (two G2 strains). In vivo challenge experiments demonstrated that anti-PEDV mAb-2 inhibited the PEDV infection in piglets. We also produced three HEK293 cell lines that expressed anti-PEDV mAb-2. Overall, our study showed that anti-PEDV mAb-2 produced from hybridoma supernatants effectively inhibited PEDV infection in piglets, and the recombinant HEK293 cell lines expressed anti-PEDV mAb-2 genes.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina/inmunología , Enfermedades de los Porcinos , Animales , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Células HEK293 , Humanos , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Células Vero
14.
Glia ; 69(7): 1709-1722, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33660902

RESUMEN

Oligodendroglial lineage cells go through a series of morphological changes before myelination. Prior to myelination, cell processes and membrane structures enlarge by approximately 7,000 times, which is required to support axonal wrapping and myelin segment formation. Failure of these processes leads to maldevelopment and impaired myelination. Quetiapine, an atypical antipsychotic drug, was proved to promote oligodendroglial differentiation and (re)myelination, pending detailed effects and regulatory mechanism. In this study, we showed that quetiapine promotes morphological maturation of oligodendroglial lineage cells and myelin segment formation, and a short-term quetiapine treatment is sufficient to induce these changes. To uncover the underlying mechanism, we examined the effect of quetiapine on the Oligodendrocyte transcription factor 1 (Olig1). We found that quetiapine upregulates Olig1 expression level and promotes nuclear Olig1 translocation to the cytosol, where it functions not as a transcription modulator, but in a way that highly correlates with oligodendrocyte morphological transformation. In addition, quetiapine treatment reverses the negative regulatory effect of the Olig1-regulated G protein-coupled receptor 17 (GPR17) on oligodendroglial morphological maturation. Our results demonstrate that quetiapine enhances oligodendroglial differentiation and myelination by promoting cell morphological transformation. This would shed light on the orchestration of oligodendroglia developmental mechanisms, and provides new targets for further therapeutic research.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Oligodendroglía , Axones/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Fumarato de Quetiapina/metabolismo , Fumarato de Quetiapina/farmacología
15.
J Vis Exp ; (178)2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34978294

RESUMEN

Demyelination has been identified in not only multiple sclerosis (MS), but also other central nervous system diseases such as Alzheimer's disease and autism. As evidence suggests that remyelination can effectively ameliorate the disease symptoms, there is an increasing focus on drug development to promote the myelin regeneration process. Thus, a region-selectable and result-reliable drug delivery technique is required to test the efficiency and specificity of these drugs in vivo. This protocol introduces the osmotic pump implant as a new drug delivery approach in the lysolecithin-induced demyelination mouse model. The osmotic pump is a small implantable device that can bypass the blood-brain barrier (BBB) and deliver drugs steadily and directly to specific areas of the mouse brain. It can also effectively improve the bioavailability of drugs such as peptides and proteins with a short half-life. Therefore, this method is of great value to the field of central nervous system myelin regeneration research.


Asunto(s)
Esclerosis Múltiple , Remielinización , Animales , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Lisofosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/farmacología , Ratones , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo
16.
Nat Neurosci ; 23(4): 481-486, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32042174

RESUMEN

Cognitive decline remains an unaddressed problem for the elderly. We show that myelination is highly active in young mice and greatly inhibited in aged mice, coinciding with spatial memory deficits. Inhibiting myelination by deletion of Olig2 in oligodendrocyte precursor cells impairs spatial memory in young mice, while enhancing myelination by deleting the muscarinic acetylcholine receptor 1 in oligodendrocyte precursor cells, or promoting oligodendroglial differentiation and myelination via clemastine treatment, rescues spatial memory decline during aging.


Asunto(s)
Envejecimiento/patología , Enfermedades Desmielinizantes/patología , Trastornos de la Memoria/patología , Vaina de Mielina/patología , Envejecimiento/genética , Animales , Enfermedades Desmielinizantes/complicaciones , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Trastornos de la Memoria/etiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Ratones , Ratones Transgénicos , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología , Factor de Transcripción 2 de los Oligodendrocitos/genética , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/patología
17.
Glia ; 68(6): 1201-1212, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31868275

RESUMEN

As the most abundant gap junction protein in the central nervous system (CNS), astrocytic connexin 43 (Cx43) maintains astrocyte network homeostasis, affects oligodendroglial development and participates in CNS pathologies as well as injury progression. However, its role in remyelination is not yet fully understood. To address this issue, we used astrocyte-specific Cx43 conditional knockout (Cx43 cKO) mice generated through the use of a hGFAP-cre promoter, in combination with mice carrying a floxed Cx43 allele that were subjected to lysolecithin so as to induce demyelination. We found no significant difference in the demyelination of the corpus callosum between Cx43 cKO mice and their non-cre littermate controls, while the remyelination process in Cx43 cKO mice was accelerated. Moreover, an increased number of mature oligodendrocytes and an unaltered number of oligodendroglial lineage cells were found in Cx43 cKO mouse lesions. This indicates that oligodendrocyte precursor cell (OPC) differentiation was facilitated by astroglial Cx43 depletion as remyelination progressed. Underlying the latter, there was a down-regulated glial activation and modulated local inflammation as well as a reduction of myelin debris in Cx43 cKO mice. Importantly, 2 weeks of orally administrating boldine, a natural alkaloid that blocks Cx hemichannel activity in astrocytes without affecting gap junctional communication, obviously modulated local inflammation and promoted remyelination. Together, the data suggest that the astrocytic Cx43 hemichannel is negatively involved in the remyelination process by favoring local inflammation. Consequently, inhibiting Cx43 hemichannel functionality may be a potential therapeutic approach for demyelinating diseases in the CNS.


Asunto(s)
Astrocitos/metabolismo , Conexina 43/metabolismo , Inflamación/metabolismo , Remielinización/fisiología , Animales , Diferenciación Celular/fisiología , Sistema Nervioso Central/metabolismo , Enfermedades Desmielinizantes/patología , Uniones Comunicantes/metabolismo , Ratones , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo
18.
Biochem Biophys Res Commun ; 520(3): 651-656, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31629472

RESUMEN

Melanocortin 4 receptor (MC4R)-deficient mice had been used for several years to study human nonalcoholic steatohepatitis (NASH). However, although liver pathologic and biochemical indicators have been examined, mice models do not always faithfully display the phenotype of the human disease. In this study, we investigated the MC4R knockout phenotype in miniature pigs. We found that pigs lacking MC4R exhibited hyperorexia, insulin resistance, hyperinsulinemia, disordered lipid metabolism and their livers accumulated significant amounts of fat. We have shown that deletion of MC4R results in hyperphagia and increased body fat, ultimately leading to hepatic steatosis without atherogenic diet.


Asunto(s)
Hiperfagia/etiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Receptor de Melanocortina Tipo 4/deficiencia , Adipocitos/patología , Tejido Adiposo/patología , Animales , Animales Modificados Genéticamente , Aumento de la Célula , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Femenino , Técnicas de Inactivación de Genes , Humanos , Hiperfagia/genética , Hiperfagia/metabolismo , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Embarazo , Receptor de Melanocortina Tipo 4/genética , Porcinos , Porcinos Enanos
19.
Nat Neurosci ; 22(5): 709-718, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30988524

RESUMEN

Disruption of the blood-brain barrier (BBB) is critical to initiation and perpetuation of disease in multiple sclerosis (MS). We report an interaction between oligodendroglia and vasculature in MS that distinguishes human white matter injury from normal rodent demyelinating injury. We find perivascular clustering of oligodendrocyte precursor cells (OPCs) in certain active MS lesions, representing an inability to properly detach from vessels following perivascular migration. Perivascular OPCs can themselves disrupt the BBB, interfering with astrocyte endfeet and endothelial tight junction integrity, resulting in altered vascular permeability and an associated CNS inflammation. Aberrant Wnt tone in OPCs mediates their dysfunctional vascular detachment and also leads to OPC secretion of Wif1, which interferes with Wnt ligand function on endothelial tight junction integrity. Evidence for this defective oligodendroglial-vascular interaction in MS suggests that aberrant OPC perivascular migration not only impairs their lesion recruitment but can also act as a disease perpetuator via disruption of the BBB.


Asunto(s)
Barrera Hematoencefálica/fisiopatología , Encefalitis/fisiopatología , Esclerosis Múltiple/fisiopatología , Células Precursoras de Oligodendrocitos/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Astrocitos/patología , Astrocitos/fisiología , Barrera Hematoencefálica/patología , Movimiento Celular , Células Cultivadas , Encefalitis/patología , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Esclerosis Múltiple/patología , Células Precursoras de Oligodendrocitos/patología , Uniones Estrechas/metabolismo , Sustancia Blanca/patología
20.
Nat Commun ; 9(1): 2862, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30131568

RESUMEN

Oligodendrocyte progenitor cells (OPC) undergo asymmetric cell division (ACD) to generate one OPC and one differentiating oligodendrocyte (OL) progeny. Loss of pro-mitotic proteoglycan and OPC marker NG2 in the OL progeny is the earliest immunophenotypic change of unknown mechanism that indicates differentiation commitment. Here, we report that expression of the mouse homolog of Drosophila tumor suppressor Lethal giant larvae 1 (Lgl1) is induced during OL differentiation. Lgl1 conditional knockout OPC progeny retain NG2 and show reduced OL differentiation, while undergoing more symmetric self-renewing divisions at the expense of asymmetric divisions. Moreover, Lgl1 and hemizygous Ink4a/Arf knockouts in OPC synergistically induce gliomagenesis. Time lapse and total internal reflection microscopy reveals a critical role for Lgl1 in NG2 endocytic routing and links aberrant NG2 recycling to failed differentiation. These data establish Lgl1 as a suppressor of gliomagenesis and positive regulator of asymmetric division and differentiation in the healthy and demyelinated murine brain.


Asunto(s)
Glicoproteínas/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Proteoglicanos/metabolismo , Animales , División Celular Asimétrica/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Glicoproteínas/genética , Immunoblotting , Ratones , Monensina/farmacología , Oligodendroglía/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA