Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Sci Total Environ ; 943: 173835, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38851345

RESUMEN

OBJECTIVE: Chronic exposure to cold temperature is known to elevate blood pressure, leading to a condition known as cold-induced hypertension (CIH). Our previous research suggested correlations between alterations in gut microbiota, decrease in butyrate level, and the onset and progression of CIH. However, the role of butyrate in CIH and the underlying mechanisms need further investigation. METHODS: We exposed Specific Pathogen Free (SPF) rats to continuous cold temperature (4 ± 1 °C) for 6 weeks to establish a CIH rat model. Rats were divided into different groups by dose and duration, and the rats under cold were administered with butyrate (0.5 or 1 g/kg/day) daily. We assessed hypertension-associated phenotypes, pathological morphological changes, and endocrine-related phenotypes of brown adipose tissue (BAT). The effects of butyrate on gut microbiota and intestinal content metabolism were evaluated by 16s RNA sequencing and non-targeted metabolomics, respectively. RESULTS: The systolic blood pressure (SBP) of rats exposed to cold after supplemented with butyrate were significantly lower than that of the Cold group. Butyrate may increase the species, abundance, and diversity of gut microbiota in rats. Specifically, butyrate intervention enriched beneficial bacterial genera, such as Lactobacillaceae, and decreased the levels of harmful bacteria genera, such as Actinobacteriota and Erysipeiotrichaceae. Cold exposure significantly increased BAT cells and the number of mitochondria. After butyrate supplementation, the levels of peroxisome proliferator-activated receptor gamma coactivator 1a and fibroblast growth factor 21 in BAT were significantly elevated (P < 0.05), and the volume and number of lipid droplets increased. The levels of ANG II and high-density lipoprotein were elevated in the Cold group but decreased after butyrate supplementation. CONCLUSION: Butyrate may attenuate blood pressure in CIH by promoting the growth of beneficial bacteria and the secretion of beneficial derived factors produced by BAT, thus alleviating the elevation of blood pressure induced by cold. This study demonstrates the anti-hypertensive effects of butyrate and its potential therapeutic mechanisms, offering novel insights to the prevention and treatment of CIH in populations living or working in cold environments.


Asunto(s)
Tejido Adiposo Pardo , Butiratos , Frío , Microbioma Gastrointestinal , Hipertensión , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Ratas , Frío/efectos adversos , Masculino
2.
Genes (Basel) ; 15(5)2024 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-38790195

RESUMEN

Soybean mosaic virus (SMV) is one of the main pathogens that can negatively affect soybean production and quality. To study the gene regulatory network of soybeans in response to SMV SC15, the resistant line X149 and susceptible line X97 were subjected to transcriptome analysis at 0, 2, 8, 12, 24, and 48 h post-inoculation (hpi). Differential expression analysis revealed that 10,190 differentially expressed genes (DEGs) responded to SC15 infection. Weighted gene co-expression network analysis (WGCNA) was performed to identify highly related resistance gene modules; in total, eight modules, including 2256 DEGs, were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of 2256 DEGs revealed that the genes significantly clustered into resistance-related pathways, such as the plant-pathogen interaction pathway, mitogen-activated protein kinases (MAPK) signaling pathway, and plant hormone signal transduction pathway. Among these pathways, we found that the flg22, Ca2+, hydrogen peroxide (H2O2), and abscisic acid (ABA) regulatory pathways were fully covered by 36 DEGs. Among the 36 DEGs, the gene Glyma.01G225100 (protein phosphatase 2C, PP2C) in the ABA regulatory pathway, the gene Glyma.16G031900 (WRKY transcription factor 22, WRKY22) in Ca2+ and H2O2 regulatory pathways, and the gene Glyma.04G175300 (calcium-dependent protein kinase, CDPK) in Ca2+ regulatory pathways were highly connected hub genes. These results indicate that the resistance of X149 to SC15 may depend on the positive regulation of flg22, Ca2+, H2O2, and ABA regulatory pathways. Our study further showed that superoxide dismutase (SOD) activity, H2O2 content, and catalase (CAT) and peroxidase (POD) activities were significantly up-regulated in the resistant line X149 compared with those in 0 hpi. This finding indicates that the H2O2 regulatory pathway might be dependent on flg22- and Ca2+-pathway-induced ROS generation. In addition, two hub genes, Glyma.07G190100 (encoding F-box protein) and Glyma.12G185400 (encoding calmodulin-like proteins, CMLs), were also identified and they could positively regulate X149 resistance. This study provides pathways for further investigation of SMV resistance mechanisms in soybean.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Glycine max , Enfermedades de las Plantas , Potyvirus , Glycine max/genética , Glycine max/virología , Potyvirus/patogenicidad , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Transducción de Señal/genética
3.
J Air Waste Manag Assoc ; 74(6): 449-456, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38739852

RESUMEN

Nitrogen dioxide (NO2) represents a deleterious effect on acute myocardial infarction (AMI), but few relevant studies have been conducted in China. We aim to evaluate the acute effects of NO2 exposure on hospitalization for AMI in Lanzhou, China. In this study, we applied a distributional lag nonlinear model (DLNM) to assess the association between NO2 exposure and AMI hospitalization. We explored the sensitivity of various groups through stratified analysis by gender, age, and season. The daily average concentration of NO2 is 47.50 ± 17.38 µg/m3. We observed a significant exposure-response relationship between NO2 concentration and AMI hospitalization. The single pollutant model analysis shows that NO2 is positively correlated with AMI hospitalization at lag1, lag01, lag02, and lag03. The greatest lag effect estimate occurs at lag01, where a 10 µg/m3 increase in NO2 concentrations is significantly associated with a relative risk (RR) of hospitalization due to AMI of 1.027 [95% confidence interval (CI): 1.013, 1.042]. The results of the stratified analysis by gender, age, and season indicate that males, those aged ≥65 years, and the cold season are more sensitive to the deleterious effects caused by NO2 exposure. Short-term exposure to NO2 can enhance the risk of AMI hospitalization in urban Lanzhou.Implications: Exposure to particulate matter can lead to an increased incidence of AMI. Our study once again shows that NO2 exposure increases the risk of AMI hospital admission. AMI is a common and expensive fatal condition. Reducing NO2 exposure will benefit cardiovascular health and save on healthcare costs.


Asunto(s)
Contaminantes Atmosféricos , Hospitalización , Infarto del Miocardio , Dióxido de Nitrógeno , China/epidemiología , Infarto del Miocardio/epidemiología , Infarto del Miocardio/inducido químicamente , Humanos , Masculino , Dióxido de Nitrógeno/análisis , Femenino , Anciano , Persona de Mediana Edad , Hospitalización/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Estaciones del Año , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis
4.
Front Microbiol ; 15: 1395154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800759

RESUMEN

Introduction: Long-term heavy metal contamination of soil affects the structure and function of microbial communities. The aim of our study was to investigate the effect of soil heavy metal contamination on microorganisms and the impact of different heavy metal pollution levels on the microbial interactions. Methods: We collected soil samples and determined soil properties. Microbial diversity was analyzed in two groups of samples using high-throughput sequencing technology. Additionally, we constructed microbial networks to analyze microbial interactions. Results: The pollution load index (PLI) < 1 indicates that the area is not polluted. 1 < PLI < 2 represents moderate pollution. PLI was 1.05 and 0.14 for the heavy metal contaminated area and the uncontaminated area, respectively. Cd, Hg, Pb, Zn, and Cu were identified as the major contaminants in the contaminated area, with the contamination factors were 30.35, 11.26, 5.46, 5.19, and 2.46, respectively. The diversities and compositions of the bacterial community varied significantly between the two groups. Compared to the uncontaminated area, the co-occurrence network between bacterial and fungal species in the contaminated area was more complex. The keystone taxa of the co-occurrence network in the contaminated area were more than those in the uncontaminated area and were completely different from it. Discussion: Heavy metal concentrations played a crucial role in shaping the difference in microbial community compositions. Microorganisms adapt to long-term and moderate levels of heavy metal contamination through enhanced interactions. Bacteria resistant to heavy metal concentrations may play an important role in soils contaminated with moderate levels of heavy metals over long periods of time.

5.
Biol Trace Elem Res ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801624

RESUMEN

In this study, we explored how cadmium and lead co-exposure affects sleep status among residents of a polluted area and nature reserve in rural northwestern China. Cadmium and lead levels were measured using blood samples, and sleep status was evaluated using sleep questionnaires, with the main sleep indicators including sleep duration, sleep quality, bedtime, and staying up. Furthermore, cadmium-lead co-exposure levels were divided into three groups: high exposure, medium exposure, and low exposure. Subjects in the contaminated area had significantly higher exposure levels (p < 0.001) and more negative sleep indicators (p < 0.01). Significant differences were found for all four sleep indicators in the high exposure group compared to the low exposure group (p < 0.01). Moreover, the overall evaluation of sleep status with high cadmium-lead co-exposure had a negative impact. Our data suggest that cadmium-lead co-exposure has a negative effect on sleep status and may have a synergistic effect on sleep.

6.
Sci Rep ; 14(1): 8023, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580805

RESUMEN

Toxic metals are vital risk factors affecting serum ion balance; however, the effect of their co-exposure on serum ions and the underlying mechanism remain unclear. We assessed the correlations of single metal and mixed metals with serum ion levels, and the mediating effects of mineralocorticoids by investigating toxic metal concentrations in the blood, as well as the levels of representative mineralocorticoids, such as deoxycorticosterone (DOC), and serum ions in 471 participants from the Dongdagou-Xinglong cohort. In the single-exposure model, sodium and chloride levels were positively correlated with arsenic, selenium, cadmium, and lead levels and negatively correlated with zinc levels, whereas potassium and iron levels and the anion gap were positively correlated with zinc levels and negatively correlated with selenium, cadmium and lead levels (all P < 0.05). Similar results were obtained in the mixed exposure models considering all metals, and the major contributions of cadmium, lead, arsenic, and selenium were highlighted. Significant dose-response relationships were detected between levels of serum DOC and toxic metals and serum ions. Mediation analysis showed that serum DOC partially mediated the relationship of metals (especially mixed metals) with serum iron and anion gap by 8.3% and 8.6%, respectively. These findings suggest that single and mixed metal exposure interferes with the homeostasis of serum mineralocorticoids, which is also related to altered serum ion levels. Furthermore, serum DOC may remarkably affect toxic metal-related serum ion disturbances, providing clues for further study of health risks associated with these toxic metals.


Asunto(s)
Arsénico , Metales Pesados , Selenio , Humanos , Plomo/toxicidad , Arsénico/toxicidad , Cadmio/toxicidad , Análisis de Mediación , Mineralocorticoides , Intoxicación por Metales Pesados , Zinc , Hierro , Iones , China , Metales Pesados/toxicidad
7.
Metabolites ; 14(2)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38392989

RESUMEN

Astragali Radix, derived from the roots of Astragalus mongholicus, is a traditional Chinese medicine containing flavonoids and saponins as its key ingredients. With a shortage in the wild sources of the herbal plant, it is especially important to explore a cultivation mode for A. mongholicus for medicinal purposes. Cutting, a physical environmental stress method, was used in this study with the objective of improving the quality of this herbal legume. We found that cutting of the top 1/3 of the aboveground part of A. mongholicus during the fruiting period resulted in a significant increase in the content of flavonoids and saponins, as well as in root growth, including length, diameter, and dry weight. Furthermore, the leaves were sampled and analyzed using a combined transcriptome and metabolome analysis approach at five different time points after the treatment. Sixteen differentially expressed unigenes (DEGs) involved in the biosynthesis of flavonoids were identified; these were found to stimulate the synthesis of flavonoids such as formononetin and calycosin-7-O-ß-D-glucoside. Moreover, we identified 10 DEGs that were associated with the biosynthesis of saponins, including astragaloside IV and soyasaponin I, and found that they only regulated the mevalonic acid (MVA) pathway. These findings provide new insights into cultivating high-quality A. mongholicus, which could potentially alleviate the scarcity of this valuable medicinal plant.

8.
J Basic Microbiol ; 64(3): e2300435, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38150647

RESUMEN

Heavy metal (HM) contamination caused by mining and smelting activities can be harmful to soil microbiota, which are highly sensitive to HM stress. Here, we explore the effects of HM contamination on the taxonomic composition, predicted function, and co-occurrence patterns of soil bacterial communities in two agricultural fields with contrasting levels of soil HMs (i.e., contaminated and uncontaminated natural areas). Our results indicate that HM contamination does not significantly influence soil bacterial α diversity but changes the bacterial community composition by enriching the phyla Gemmatimonadetes, Planctomycetes, and Parcubacteria and reducing the relative abundance of Actinobacteria. Our results further demonstrate that HM contamination can strengthen the complexity and modularity of the bacterial co-occurrence network but weaken positive interactions between keystone taxa, leading to the gradual disappearance of some taxa that originally played an important role in healthy soil, thereby possibly reducing the resistance of bacterial communities to HM toxicity. The predicted functions of bacterial communities are related to membrane transport, amino acid metabolism, energy metabolism, and carbohydrate metabolism. Among these, functions related to HM detoxification and antioxidation are enriched in uncontaminated soils, while HM contamination enriches functions related to metal resistance. This study demonstrated that microorganisms adapt to the stress of HM pollution by adjusting their composition and enhancing their network complexity and potential ecological functions.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Metales Pesados/farmacología , Bacterias
9.
Environ Monit Assess ; 196(1): 99, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38157088

RESUMEN

Soil pollution by heavy metals can cause continuing damage to ecosystems and the human body. In this study, we collected nine fresh topsoil samples and 18 maize samples (including nine leaf samples and nine corn samples) from agricultural soils in the Baiyin mining areas. The results showed that the order of heavy metal concentrations (mg/kg) in agricultural soils was as follows: Zn (377.40) > Pb (125.06) > Cu (75.06) > Ni (28.29) > Cd (5.46) > Hg (0.37). Cd, Cu, Zn, and Pb exceeded the Chinese risk limit for agricultural soil pollution. The average the pollution load index (4.39) was greater than 3, indicating a heavy contamination level. The element that contributed the most to contamination and high ecological risk in soil was Cd. Principal component analysis (PCA) and Pearson's correlation analysis indicated that the sources of Ni, Cd, Cu, and Zn in the soil were primarily mixed, involving both industrial and agricultural activities, whereas the sources of Hg and Pb included both industrial and transportation activities. Adults and children are not likely to experience non-carcinogenic impacts from the soil in this region. Nonetheless, it was important to be aware of the elevated cancer risk presented by Cd, Pb, and especially Ni. The exceedance rates of Cd and Pb in corn were 66.67% and 33.3%, respectively. The results of this research provide data to improve soil protection, human health monitoring, and crop management in the Baiyin district.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Humanos , Adulto , Niño , Suelo , Monitoreo del Ambiente , Ecosistema , Cadmio/análisis , Plomo/análisis , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Medición de Riesgo , Mercurio/análisis , China , Zea mays
10.
Front Microbiol ; 14: 1264619, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928665

RESUMEN

Objectives: The aim of our study was to investigate the impact of long-term exposure to heavy metals on the microbiome of the buccal mucosa, to unveil the link between environmental contamination and the oral microbial ecosystem, and to comprehend its potential health implications. Methods: Subjects were divided into two groups: the exposure group and the control group. We collected samples of buccal mucosa, soil, and blood, and conducted microbial diversity analysis on both groups of oral samples using 16S rRNA gene sequencing. The concentrations of heavy metals in blood and soil samples were also determined. Additionally, microbial networks were constructed for the purpose of topological analysis. Results: Due to long-term exposure to heavy metals, the relative abundance of Rhodococcus, Delftia, Fusobacterium, and Peptostreptococcus increased, while the abundance of Streptococcus, Gemella, Prevotella, Granulicatella, and Porphyromonas decreased. The concentrations of heavy metals in the blood (Pb, Cd, Hg, and Mo) were associated with the growth of Rhodococcus, Delftia, Porphyromonas, and Gemella. In addition, the relative abundances of some pathogenic bacteria, such as Streptococcus anginosus, S. gordonii, and S. mutans, were found to be enriched in the exposure group. Compared to the exposure group network, the control group network had a greater number of nodes, modules, interactive species, and keystone taxa. Module hubs and connectors in the control group converted into peripherals in the exposure group, indicating that keystone taxa changed. Metals in the blood (Pb, Cd, Hg, and Mo) were drivers of the microbial network of the buccal mucosa, which can have adverse effects on the network, thus providing conditions for the occurrence of certain diseases. Conclusion: Long-term exposure to multiple metals perturbs normal bacterial communities in the buccal mucosa of residents in contaminated areas. This exposure reduces the complexity and stability of the microbial network and increases the risk of developing various diseases.

11.
BMC Microbiol ; 23(1): 292, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845638

RESUMEN

BACKGROUND: Astragalus mongolicus Bunge is used in traditional Chinese medicine and is thus cultivated in bulk. The cultivation of A. mongolicus requires a large amount of nitrogen fertilizer, increasing the planting cost of medicinal materials and polluting the environment. Isolation and screening of plant growth-promoting rhizobacteria (PGPR) and exploring the nitrogen fixation potential of A. mongolicus rhizosphere microorganisms would effectively reduce the production cost of A. mongolicus. RESULTS: This study used A. mongolicus roots and rhizosphere soil samples from Longxi County of Gansu Province, Jingle County, and Hunyuan County of Shanxi Province, China, to isolate and identify nitrogen-fixing bacteria. Through nitrogen fixation efficiency test, single strain inoculation test, and plant growth-promoting characteristics, three strains, Bacillus sp. J1, Arthrobacter sp. J2, and Bacillus sp. G4 were selected from 86 strains of potential nitrogen-fixing bacteria, which were the most effective in promoting the A. mongolicus growth and increasing the nitrogen, phosphorus, and potassium content in plants. The antagonistic test showed that these bacteria could grow smoothly under the co-culture conditions. The J1, J2, and G4 strains were used in a mixed inoculum and found to enhance the biomass of A. mongolicus plants and the accumulation of the main medicinal components in the field experiment. Mixed bacterial agent inoculation also increased bacterial diversity and changed the structure of the bacterial community in rhizosphere soil. Meanwhile, the relative abundance of Proteobacteria increased significantly after inoculation, suggesting that Proteobacteria play an important role in plant growth promotion. CONCLUSIONS: These findings indicate that specific and efficient PGPRs have a significant promoting effect on the growth of A. mongolicus, while also having a positive impact on the structure of the host rhizosphere bacteria community. This study provides a basis for developing a nitrogen-fixing bacterial fertilizer and improving the ecological planting efficiency of A. mongolicus.


Asunto(s)
Bacillus , Bacterias Fijadoras de Nitrógeno , Rizosfera , Fertilizantes/microbiología , Medicina Tradicional China , Bacterias , Nitrógeno , Suelo/química , Microbiología del Suelo , Raíces de Plantas/microbiología
12.
Environ Sci Pollut Res Int ; 30(24): 65646-65658, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37085680

RESUMEN

BACKGROUND: Heavy metal exposure is acknowledged to be associated with decrease of lung function, but the relationship between metals co-exposure and lung function in rural areas of Northwest China remains unclear, particularly in an area famous for heavy metal pollution and solid fuel use. Therefore, the purpose of this study is to explore the effects of heavy metal exposure on lung function and the potential impacts of living habit in a rural cohort of Northwest China. METHODS: The study area included five villages of two regions in Northwestern China-Gansu province. All participants were recruited from the Dongdagou-Xinglong (DDG-XL) rural cohort in the study area. Urine levels of 10 common and representative heavy metals were detected by ICP-MS, including Cobalt (Co), Nickel (Ni), Molybdenum (Mo), Cadmium (Cd), Stibium (Sb), Copper (Cu), Zinc (Zn), Mercury (Hg), Lead (Pb), and Manganese (Mn). The lung function was detected by measuring percentages of predicted forced vital capacity (FVC%) and predicted forced expiratory volume in one second (FEV1%) as well as the ratio of FEV1/FVC. We also analyzed the association between heavy metals and pulmonary ventilation dysfunction (PVD). Restricted cubic spline, logistic regression, linear regression, and bayesian kernel machine regression (BKMR) model were used to analyze the relationship between heavy metal exposure and lung function. RESULTS: Finally, a total of 382 participants were included in this study with an average age of 56.69 ± 7.32 years, and 82.46% of them used solid fuels for heating and cooking. Single metal exposure analysis showed that the higher concentration of Hg, Mn, Sb, and lower Mo may be risk factors for PVD. We also found that FEV1% and FVC% were negatively correlated with Sb, Hg, and Mn, but positively correlated with Mo. The effect of mixed heavy metals exposure could be observed through BKMR model, through which we found the lung function decreased with the increase of heavy metal concentration. Furthermore, the males, BMI ≥ 24 kg/m2 and who used solid fuels showed a higher risk of PVD when exposed to Co, Zn, and Hg. CONCLUSIONS: Our results suggested that heavy metal exposure was associated with decrease of lung function regardless of single exposure or mixed exposure, particularly for Sb, Hg, Mn and those who use solid fuels.


Asunto(s)
Exposición a Riesgos Ambientales , Pulmón , Metales Pesados , Humanos , Masculino , Persona de Mediana Edad , Teorema de Bayes , China , Cobalto/análisis , Pulmón/fisiología , Manganeso/análisis , Mercurio/análisis , Metales Pesados/análisis , Población Rural , Zinc/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminación del Aire/estadística & datos numéricos
13.
Sci Rep ; 13(1): 3902, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890158

RESUMEN

Isoprenoids, a large kind of plant natural products, are synthesized by the mevalonate (MVA) pathway in the cytoplasm and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. As one of the rate-limiting enzymes in the MVA pathway of soybean (Glycine max), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is encoded by eight isogenes (GmHMGR1-GmHMGR8). To begin, we used lovastatin (LOV), a specific inhibitor of GmHMGR, to investigate their role in soybean development. To further investigate, we overexpressed the GmHMGR4 and GmHMGR6 genes in Arabidopsis thaliana. The growth of soybean seedlings, especially the development of lateral roots, was inhibited after LOV treatment, accompanied by a decrease in sterols content and GmHMGR gene expression. After the overexpression of GmHMGR4 and GmHMGR6 in A. thaliana, the primary root length was higher than the wild type, and total sterol and squalene contents were significantly increased. In addition, we detected a significant increase in the product tocopherol from the MEP pathway. These results further support the fact that GmHMGR1-GmHMGR8 play a key role in soybean development and isoprenoid biosynthesis.


Asunto(s)
Arabidopsis , Glycine max , Glycine max/genética , Glycine max/metabolismo , Terpenos/metabolismo , Escualeno/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Lovastatina/farmacología , Coenzima A/metabolismo , Ácido Mevalónico/metabolismo
14.
Chemosphere ; 317: 137783, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36638928

RESUMEN

Cadmium (Cd) and lead (Pb) are important environmental endocrine disruptors that are associated with adverse health problems. However, the effects of co-exposure to Cd and Pb on glucocorticoids (GCs) in the body at environmental levels are limited. A total of 468 subjects from the Dongdagou-Xinglong cohort (DDG-XL) were included in this study. We measured the serum levels of two representative endogenous GCs [cortisol (CRL) and cortisone (CRN)], and whole blood levels of Cd and Pb. Multiple linear regression models were constructed to explore the associations of single or combined Cd and Pb exposure with serum CRL and CRN levels. The interactive effects of Cd and Pb on GCs were further assessed using mediation analysis and moderation analysis. Single-heavy metal exposure analysis with adjustment for potential confounders showed that the serum CRL level decreased when the blood Cd or Pb concentration gradually increased (P trend <0.01). Additionally, subjects with high Cd or Pb exposure (Q4) had significantly reduced serum CRN levels compared to those with low Cd or Pb exposure (Q1) (P < 0.05). In Cd and Pb co-exposure analysis, significant negative dose-response relationships were observed between co-exposure to Cd and Pb and serum CRL and CRN levels. Furthermore, mediation analysis showed that Cd completely mediated the relationship between Pb and GCs, and moderation analysis suggested that Pb might weaken the negative relationship between Cd and GCs. These findings suggest that single or combined exposure to Cd and Pb interferes with the homeostasis of serum CRL and CRN levels. Furthermore, we innovatively propose that Cd and Pb may have interactive effects on GCs levels, and Pb can antagonize the negative relationship between Cd and GCs, which may provide clues for further studies on endocrine and metabolic disorders related to these heavy metals.


Asunto(s)
Cadmio , Metales Pesados , Humanos , Cadmio/análisis , Glucocorticoides , Plomo/toxicidad , Plomo/análisis , Metales Pesados/análisis , China
15.
Biol Trace Elem Res ; 201(3): 1101-1111, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35499801

RESUMEN

Few studies have focused on environmental cadmium (Cd) and lead (Pb) exposure while exploring the effect of smoking on blood Cd (BCd) and blood Pb (BPb) levels. Moreover, essential trace elements affect the absorption, accumulation, and toxicity of Cd and Pb. To investigate the effect of smoking on BCd and BPb levels under high Cd and Pb exposure and the influence of essential trace elements on the effect, 301 residents living near a mining and smelting area in Northwest China were included in our study. After collecting health information and measuring BCd, BPb, serum iron, magnesium, and total calcium levels, we analyzed the association between smoking and BCd and BPb levels and the influence of the essential trace elements on the association. The results showed that BCd and BPb levels in smokers were significantly higher than those in non-smokers. There was a dose-response association between pack-years and the odds ratios (ORs) of high BCd and BPb levels in all participants compared with non-smokers. Serum iron, magnesium, and calcium had a negative effect on the elevations of the ORs of high BCd and BPb levels. In addition, smoking-related elevations of BCd and BPb levels vary by sex, age, BMI, and age of smoking initiation. Our findings present evidence for the effect of smoking on BCd and BPb levels under high Cd and Pb exposure and may provide guidance for the prevention and control of BCd and BPb elevations in residents living in Cd- and Pb-polluted areas.


Asunto(s)
Cadmio , Oligoelementos , Humanos , Cadmio/toxicidad , Plomo/toxicidad , Estudios Transversales , Fumar/efectos adversos , Calcio , Magnesio , China , Hábitos , Hierro
16.
Environ Pollut ; 317: 120727, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36427825

RESUMEN

Heavy metals are important risk factors for kidney, but their co-exposure effect on kidney and related mechanism remain unclear. This study evaluated the relationship between heavy metals and renal function, and the feasible mediation effect of oxidative stress. Based on the Dongdagou-Xinglong cohort, participants were recruited and their information were collected through questionnaires and physical examinations. The urine concentration of heavy metals like Cobalt, Nickel, Molybdenum, Cadmium, Antimony, Copper, Zinc, Mercury, Lead, Manganese, and renal injury biomarkers like ß2-microglobulin, ß-N-Acetylglucosaminidase, retinol-binding protein, 8-hydroxyguanine (8-OHG) were measured and corrected by creatinine. Linear regression was conducted to analyze the relationship between metals and renal biomarkers. Bayesian kernel machine regression, weighted quantile sum and quantile-based g-computation were applied to analyze the association between metal mixtures and renal biomarkers. Finally, the mediating effect of 8-OHG was analyzed through the mediation model. We found that these metals were positively related with renal biomarkers, where copper showed the strongest relationship. The co-exposure models showed that renal biomarkers increased with the concentration of mixtures, particularly for cadmium, copper, mercury, manganese. In addition, the proportion of 8-OHG in mediating effect of metals on renal function ranged from 2.6% to 86.9%. Accordingly, the renal function damage is positively associated with metals, and 8-OHG may play an important mediating role.


Asunto(s)
Mercurio , Metales Pesados , Humanos , Cadmio/toxicidad , Estudios Transversales , Cobre , Manganeso , Teorema de Bayes , Exposición a Riesgos Ambientales/análisis , Metales Pesados/toxicidad , Riñón/fisiología , China , Biomarcadores
17.
Artículo en Inglés | MEDLINE | ID: mdl-35457441

RESUMEN

Previous research suggests that heavy metals may be associated with increased susceptibility to Helicobacter pylori infection. This study investigated the effect of heavy metal exposure (Pb and Cd) on tooth loss and H. pylori infection in a Chinese rural population, who live near a mining and smelting area. Blood samples were collected from the study participants to estimate the lead (Pb) and cadmium (Cd) exposure levels. H. pylori infection was analyzed using the 14C-urea breath test, and the number of missing teeth (MT), filled teeth (FT), and missing or filled teeth (MFT) were counted by conducting a physical examination. Regression analysis was used to assess the difference between H. pylori-positive and -negative individuals in the MT, FT, and MFT groups, adjusting for confounders. The H. pylori infection prevalence was higher in individuals in the high Cd or high Pb groups than that in the low Cd or low Pb groups (p < 0.05). In addition, greater numbers of FT and MFT were observed in individuals in the high Pb group than those in the low Pb group (p < 0.05). We further found 8.7% (95% CI, 2.8−23.8%, p = 0.017) of the effect of the high BPb level on H. pylori infection risk could be statistically explained by FT using amediation analyses in adjusted models, and 6.8% (95% CI, 1.6−24.8%, p = 0.066) by MFT. Furthermore, FT and MFT were significantly associated with increased risk for H. pylori infection (odds ratio (OR) = 4.938, 95% confidence interval (CI): 1.125−21.671; OR = 3.602, 95% CI: 1.218−10.648, respectively). Pb and Cd exposure may be associated with tooth loss and increased susceptibility to H. pylori infection, and tooth loss may be an independent risk factor for H. pylori infection.


Asunto(s)
Distinciones y Premios , Infecciones por Helicobacter , Helicobacter pylori , Pérdida de Diente , Pruebas Respiratorias , Cadmio , China/epidemiología , Infecciones por Helicobacter/complicaciones , Humanos , Plomo , Población Rural , Pérdida de Diente/complicaciones , Pérdida de Diente/epidemiología
18.
Environ Pollut ; 304: 119211, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35341822

RESUMEN

Cadmium (Cd) exposure is recognized as an important risk factor for psychological health, but suitable physical activity may relieve depression. However, it remains unknown whether physical activity (PA) can reduce the effect of cadmium exposure on depression. Therefore, a cross-sectional data from National Health and Nutrition Examination Survey (NHANES) 2015-2018 was used. The Nine-item Patient Health Questionnaire (PHQ-9) was used to assess depression among the participants. PA was calculated according to the metabolic equivalent (MET), weekly frequency, and duration of each activity. Logistic regression and restricted cubic spline models were used to examine the associations of Cd and depression. A total of 5560 adults aged 20 years and above were finally included in this study. The results indicated a positive correlation between blood Cd and depression. The multivariate-adjusted ORs (95% CI) of the highest quartile were 2.290 (1.754-2.990) for depression, which was still significant after controlling other heavy metals (P < 0.05). Under Cd exposure, the high intensity of physical activity group had the lowest risk of depression (OR = 2.226, 95%CI: 1.447-3.425), while the group with no physical activity had the highest risk (OR = 2.443, 95%CI: 1.382-4.318). Our results indicate that inner Cd exposure may be a risk factor for depression, and physical activity can moderate this relationship to some degree.


Asunto(s)
Cadmio , Depresión , Adulto , Estudios Transversales , Depresión/epidemiología , Ejercicio Físico , Humanos , Encuestas Nutricionales
19.
Environ Sci Pollut Res Int ; 29(19): 28637-28646, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34988822

RESUMEN

Climate has received an increasing attention due to its adverse effects on human health, but the effects on the urinary system are still short of enough evidence. Therefore, we carry out this study to analyze the relationship between meteorological factors and urinary system health in arid areas of western China. In this study, the daily numbers of outpatients with the urinary system diseases from multiple hospitals in three cities in Gansu province (Lanzhou, Zhangye, and Tianshui city) were collected and used for analysis. The distributed lag non-linear models (DLNM) with a quasi-Poisson distribution were used to estimate the associations between meteorological factors and daily outpatients for urinary system diseases in these three cities, and then a multivariate meta-analysis was applied to pool the estimates of city-specific effects. We found that the ambient temperature (AT) and relative humidity (RH) were significantly associated with the outpatient visits of urinary system diseases. The effects of meteorological factors on outpatients with urinary system diseases for both males and females were statistically significant at different lag days. The higher AT and lower RH were associated with the higher risk of urinary system diseases. We also observed substantial lag effects of meteorological factors on outpatients for both males and females. Among all disease types, renal tubule-interstitial diseases had the strongest relationships with meteorological factors. Our results indicate that the higher AT and lower RH may increase the outpatient visits for urinary system diseases, with significant lag effects in semi-arid areas.


Asunto(s)
Conceptos Meteorológicos , China , Ciudades , Femenino , Humanos , Humedad , Masculino , Temperatura
20.
Environ Geochem Health ; 44(11): 4173-4189, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35037141

RESUMEN

Chronic exposure to environmental cadmium (Cd) and lead (Pb) may have adverse effects on the human health. In this study, we aimed to determine the primary and interactive effects of Cd and Pb exposure on liver function in residents near a mining and smelting area in northwestern China. A total of 451 subjects were recruited, from which blood samples were collected to determine the levels of Cd, Pb, and liver function indices. Additionally, the association between the levels of exposure markers and liver function indices was analysed. Cd and Pb levels were significantly higher in subjects living in the polluted area than in those living in the non-polluted reference area. The liver function levels of subjects in the polluted area were poor compared with those in the reference area. In addition, Cd and Pb levels in the blood were positively associated with gamma glutamyl transpeptidase (GGT) levels and negatively associated with direct bilirubin (DBil) levels. Cd and Pb may be risk factors for abnormal liver function. The risk of abnormal liver function was higher in subjects with moderate Cd and Pb levels, high Cd levels, high Pb levels, and high Cd and Pb levels than in those with low Cd and Pb levels. Our data show that exposure to Cd and/or Pb can cause abnormal liver function. Cd and Pb may have an antagonistic effect on liver function, and high Cd exposure alone has a more profound effect on abnormal liver function compared with co-exposure to Pb and Cd.


Asunto(s)
Cadmio , Exposición a Riesgos Ambientales , Hígado , Humanos , Bilirrubina , Cadmio/sangre , Cadmio/toxicidad , China , gamma-Glutamiltransferasa , Plomo/análisis , Plomo/sangre , Hígado/efectos de los fármacos , Hígado/fisiopatología , Minería , Exposición a Riesgos Ambientales/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...