Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Gene ; 851: 146762, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35933050

RESUMEN

The commercial value of Santalum album L. lies in its aromatic heartwood and essential oil. Sesquiterpenes are the main components of sandal essential oil, and these are synthesized through the plant's mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. In this study, the first key rate-limiting enzyme, 1-deoxy-d-xylulose-5-phosphate synthase (SaDXS), was investigated to provide a theoretical molecular basis for the sandalwood MEP sesquiterpene biosynthetic pathway. The biofunctions of SaDXS were also analyzed. SaDXS promoters were successfully cloned from a seven-year-old S. album tree. SaDXS1A/1B promoter activity was verified by a ß-glucuronidase (GUS) assay and by analyzing cis-acting elements of the promoters, which carried light- and methyl jasmonate (MeJA)-responsive signals. In an experiment involving yellow S. album seedlings, exposure to light upregulated SaDXS1A/1B expression and increased chlorophyll and carotenoid contents when overexpressed in Arabidopsis thaliana. Analysis of the expression of SaDXS1A/1B and SaSSy, key genes of santalol biosynthesis, revealed SaDXS1A expression in all tissues whereas SaDXS1B was expressed in tissues that contained photosynthetic pigments, such as stems, leaves and flowers. Sandal seedlings exogenously treated with two hormones, MeJA and ethylene, revealed similar expression patterns for SaDXS1A/1B and SaSSy. Sandal seedlings were treated with an inhibitor of DXS, clomazone, but showed no significant changes in the contents of α-santalene, ß-santalene and α-santalol between treatment and control groups. These results suggest that SaDXS1A/1B play a role in the synthesis of sandalwood sesquiterpenes, providing carbon for downstream secondary metabolites. SaDXS1A/1B also play a role in the biosynthesis of chlorophyll, carotenoids, and primary metabolites.


Asunto(s)
Aceites Volátiles , Santalum , Sesquiterpenos , Santalum/genética , Santalum/metabolismo , Sesquiterpenos/metabolismo , Aceites Volátiles/metabolismo , Clorofila , Clonación Molecular
2.
Life (Basel) ; 12(7)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35888105

RESUMEN

Santalum album L., a semi-parasitic evergreen tree, contains economically important essential oil, rich in sesquiterpenoids, such as (Z) α- and (Z) ß-santalol. However, their transcriptional regulations are not clear. Several studies of other plants have shown that basic-helix-loop-helix (bHLH) transcription factors (TFs) were involved in participating in the biosynthesis of sesquiterpene synthase genes. Herein, bHLH TF genes with similar expression patterns and high expression levels were screened by co-expression analysis, and their full-length ORFs were obtained. These bHLH TFs were named SaMYC1, SaMYC3, SaMYC4, SaMYC5, SabHLH1, SabHLH2, SabHLH3, and SabHLH4. All eight TFs had highly conserved bHLH domains and SaMYC1, SaMYC3, SaMYC4, and SaMYC5, also had highly conserved MYC domains. It was indicated that the eight genes belonged to six subfamilies of the bHLH TF family. Among them, SaMYC1 was found in both the nucleus and the cytoplasm, while SaMYC4 was only localized in the cytoplasm and the remaining six TFs were localized in nucleus. In a yeast one-hybrid experiment, we constructed decoy vectors pAbAi-SSy1G-box, pAbAi-CYP2G-box, pAbAi-CYP3G-box, and pAbAi-CYP4G-box, which had been transformed into yeast. We also constructed pGADT7-SaMYC1 and pGADT7-SabHLH1 capture vectors and transformed them into bait strains. Our results showed that SaMYC1 could bind to the G-box of SaSSy, and the SaCYP736A167 promoter, which SaSSy proved has acted as a key enzyme in the synthesis of santalol sesquiterpenes and SaCYP450 catalyzed the ligation of santalol sesquiterpenes into terpene. We have also constructed pGreenII 62-SK-SaMYC1, pGreenII 0800-LUC-SaSSy and pGreenII 0800-LUC-SaCYP736A167 via dual-luciferase fusion expression vectors and transformed them into Nicotiana benthamiana using an Agrobacterium-mediated method. The results showed that SaMYC1 was successfully combined with SaSSy or SaCYP736A167 promoter and the LUC/REN value was 1.85- or 1.55-fold higher, respectively, than that of the control group. Therefore, we inferred that SaMYC1 could activate both SaSSy and SaCYP736A167 promoters.

3.
Sci Rep ; 11(1): 16913, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413433

RESUMEN

Sandalwood (Santalum album L.) is highly valued for its fragrant heartwood and extracted oil. Santalols, which are the main components of that oil, are terpenoids, and these are biosynthesized via the mevalonic acid (MVA) pathway. Mevalonate kinase (MK) and phosphomevalonate kinase (PMK) are key enzymes in the MVA pathway. Little is known about the genes that encode MK and PMK in S. album or the mechanism that regulates their expression. To isolate and identify the functional genes involved in santalol biosynthesis in S. album, an MK gene designated as SaMK, and a PMK gene designated as SaPMK, were cloned from S. album. The sequences of these genes were analyzed. A bioinformatics analysis was conducted to assess the homology of SaMK and SaPMK with MK and PMK genes from other plants. The subcellular localization of SaMK and SaPMK proteins was also investigated, as was the functional complementation of SaMK and SaPMK in yeast. Our results show that the full-length cDNA sequences of SaMK and SaPMK were 1409 bp and 1679 bp long, respectively. SaMK contained a 1381 bp open reading frame (ORF) encoding a polypeptide of 460 amino acids and SaPMK contained a 1527 bp ORF encoding a polypeptide of 508 amino acids. SaMK and SaPMK showed high homology with MK and PMK genes of other plant species. Functional complementation of SaMK in a MK-deficient mutant yeast strain YMR208W and SaPMK in a PMK-deficient mutant yeast strain YMR220W confirmed that cloned SaMK and SaPMK cDNA encode a functional MK and PMK, respectively, mediating MVA biosynthesis in yeast. An analysis of tissue expression patterns revealed that SaMK and SaPMK were constitutively expressed in all the tested tissues. SaMK was highly expressed in young leaves but weakly expressed in sapwood. SaPMK was highly expressed in roots and mature leaves, but weakly expressed in young leaves. Induction experiments with several elicitors showed that SaMK and SaPMK expression was upregulated by methyl jasmonate. These results will help to further study the role of MK and PMK genes during santalol biosynthesis in S. album.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Santalum/enzimología , Santalum/genética , Acetatos/farmacología , Secuencia de Aminoácidos , Clonación Molecular , Biología Computacional , Ciclopentanos/farmacología , ADN Complementario/genética , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Oxilipinas/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Filogenia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Santalum/efectos de los fármacos , Fracciones Subcelulares/metabolismo
4.
Genes (Basel) ; 12(5)2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922119

RESUMEN

Sandalwood (Santalum album L.) heartwood-derived essential oil contains a high content of sesquiterpenoids that are economically highly valued and widely used in the fragrance industry. Sesquiterpenoids are biosynthesized via the mevalonate acid and methylerythritol phosphate (MEP) pathways, which are also the sources of precursors for photosynthetic pigments. 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is a secondary rate-limiting enzyme in the MEP pathway. In this paper, the 1416-bp open reading frame of SaDXR and its 897-bp promoter region, which contains putative conserved cis-elements involved in stress responsiveness (HSE and TC-rich repeats), hormone signaling (abscisic acid, gibberellin and salicylic acid) and light responsiveness, were cloned from 7-year-old S. album trees. A bioinformatics analysis suggested that SaDXR encodes a functional and conserved DXR protein. SaDXR was widely expressed in multiple tissues, including roots, twigs, stem sapwood, leaves, flowers, fruit and stem heartwood, displaying significantly higher levels in tissues with photosynthetic pigments, like twigs, leaves and flowers. SaDXR mRNA expression increased in etiolated seedlings exposed to light, and the content of chlorophylls and carotenoids was enhanced in all 35S::SaDXR transgenic Arabidopsis thaliana lines, consistent with the SaDXR expression level. SaDXR was also stimulated by MeJA and H2O2 in seedling roots. α-Santalol content decreased in response to fosmidomycin, a DXR inhibitor. These results suggest that SaDXR plays an important role in the biosynthesis of photosynthetic pigments, shifting the flux to sandalwood-specific sesquiterpenoids.


Asunto(s)
Isomerasas Aldosa-Cetosa/genética , Santalum/genética , Ácido Abscísico/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Clonación Molecular/métodos , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/metabolismo , Complejos Multienzimáticos/genética , Hojas de la Planta/genética , Raíces de Plantas/genética , Ácido Salicílico/metabolismo , Santalum/metabolismo , Homología de Secuencia de Aminoácido
5.
Sci Rep ; 11(1): 1082, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441887

RESUMEN

Sandalwood (Santalum album L.) is famous for its unique fragrance derived from the essential oil of heartwood, whose major components are santalols. To understand the mechanism underlying the biosynthesis of santalols, in this study, we cloned two related genes involved in the mevalonate pathway in S. album coding for acetyl-CoA C-acetyl transferase (AACT) and 3-hydroxy-3-methyglutary-CoA synthase (HMGS). These genes were characterized and functionally analyzed, and their expression profiles were also assessed. An AACT gene designated as SaAACT (GenBank accession No. MH018694) and a HMGS gene designated as SaHMGS (GenBank accession No. MH018695) were successfully cloned from S. album. The deduced SaAACT and SaHMGS proteins contain 415 and 470 amino acids, and the corresponding size of their open-reading frames is 1538 bp and 1807 bp, respectively. Phylogenetic trees showed that the SaAACT protein had the closest relationship with AACT from Hevea brasiliensis and the SaHMGS proteins had the highest homology with HMGS from Siraitia grosvenorii. Functional complementation of SaAACT and SaHMGS in a mutant yeast strain deficient in these proteins confirmed that SaAACT and SaHMGS cDNA encodes functional SaAACT and SaHMGS that mediate mevalonate biosynthesis in yeast. Tissue-specific expression analysis revealed that both genes were constitutively expressed in all examined tissues (roots, sapwood, heartwood, young leaves, mature leaves and shoots) of S. album, both genes showing highest expression in roots. After S. album seedlings were treated with 100 µM methyl jasmonate, the expression levels of SaAACT and SaHMGS genes increased, suggesting that these genes were responsive to this elicitor. These studies provide insight that would allow further analysis of the role of genes related to the sandalwood mevalonate pathway in the regulation of biosynthesis of sandalwood terpenoids and a deeper understanding of the molecular mechanism of santalol biosynthesis.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/genética , Hidroximetilglutaril-CoA Sintasa/genética , Proteínas de Plantas/genética , Santalum/genética , Acetil-CoA C-Acetiltransferasa/metabolismo , Clonación Molecular , Hidroximetilglutaril-CoA Sintasa/metabolismo , Proteínas de Plantas/metabolismo , Santalum/metabolismo
6.
Phytochemistry ; 183: 112610, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33383368

RESUMEN

Essential oils extracted from the heartwood of Indian sandalwood (Santalum album L.) contain linalool and nerolidol as minor components. However, nerolidol/linalool synthase (NES/LIS), which produce linalool and nerolidol, have yet to be characterized in sandalwood. Using a transcriptomic-based approach, a terpene synthase gene was screened from unigenes of transcriptome data derived from S. album seedlings exposed to low temperature (4 °C). The enzyme encoded by these complementary DNAs belongs to the TPS-b clade. Recombinant SaNES/LIS is a bifunctional enzyme that can catalyze the formation of (E)-nerolidol from farnesyl diphosphate and linalool from geranyl diphosphate, respectively. Whereas SaNES/LIS was primarily localized in chloroplastids, both as granular fluorescence and as diffuse fluorescence, it was also detected in the cytosol of a limited number of cells. Agrobacterium tumefaciens-mediated transient gene expression in planta produced the same terpene products as those obtained in vitro. Real-time PCR analysis showed the highest expression of SaNES/LIS in fruits, with about a three-fold higher level than in leaves, followed by flowers, heartwood and roots. SaNES/LIS transcripts were differentially activated in different tissues in response to methyl jasmonate, cold, high temperature, strong illumination, and drought stress. Our results provide novel insight into the role of sandalwood terpenoids in response to various environmental stresses.


Asunto(s)
Aceites Volátiles , Santalum , Sesquiterpenos , Monoterpenos Acíclicos , Santalum/genética
7.
BMC Genomics ; 20(1): 724, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601194

RESUMEN

BACKGROUND: Clerodendrum inerme (L.) Gaertn, a halophyte, usually grows on coastal beaches as an important mangrove plant. The salt-tolerant mechanisms and related genes of this species that respond to short-term salinity stress are unknown for us. The de novo transcriptome of C. inerme roots was analyzed using next-generation sequencing technology to identify genes involved in salt tolerance and to better understand the response mechanisms of C. inerme to salt stress. RESULTS: Illumina RNA-sequencing was performed on root samples treated with 400 mM NaCl for 0 h, 6 h, 24 h, and 72 h to investigate changes in C. inerme in response to salt stress. The de novo assembly identified 98,968 unigenes. Among these unigenes, 46,085 unigenes were annotated in the NCBI non-redundant protein sequences (NR) database, 34,756 sequences in the Swiss-Prot database and 43,113 unigenes in the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) database. 52 Gene Ontology (GO) terms and 31 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were matched to those unigenes. Most differentially expressed genes (DEGs) related to the GO terms "single-organism process", "membrane" and "catalytic activity" were significantly enriched while numerous DEGs related to the plant hormone signal transduction pathway were also significantly enriched. The detection of relative expression levels of 9 candidate DEGs by qRT-PCR were basically consistent with fold changes in RNA sequencing analysis, demonstrating that transcriptome data can accurately reflect the response of C. inerme roots to salt stress. CONCLUSIONS: This work revealed that the response of C. inerme roots to saline condition included significant alteration in response of the genes related to plant hormone signaling. Besides, our findings provide numerous salt-tolerant genes for further research to improve the salt tolerance of functional plants and will enhance research on salt-tolerant mechanisms of halophytes.


Asunto(s)
Clerodendrum/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Estrés Salino/genética , Clerodendrum/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Análisis de Secuencia de ARN
8.
BMC Plant Biol ; 19(1): 115, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30922222

RESUMEN

BACKGROUND: It is well known that aromatic essential oils extracted from the heartwood of Santalum album L. have wide economic value. However, little is known about the role of terpenoids in response to various adverse environmental stresses as other plants do in the form of signals during plant-environment interactions. RESULTS: In this study, trace amounts of volatiles consisting of α-santalene, epi-ß-santalene, ß-santalene, α-santalol, ß-santalol, (E)-α-bergamotene, (E)-ß-farnesene and ß-bisabolene were found in the leaves of mature S. album trees. We identified more than 40 candidate terpene synthase (TPS) unigenes by mining publicly-available RNA-seq data and characterized the enzymes encoded by three cDNAs: one mono-TPS catalyzes the formation of mostly α-terpineol, and two multifunctional sesqui-TPSs, one of which produces (E)-α-bergamotene and sesquisabinene as major products and another which catalyzes the formation of (E)-ß-farnesene, (E)-nerolidol and (E,E)-farnesol as main products. Metabolite signatures and gene expression studies confirmed that santalol content is closely related with santalene synthase (SaSSY) transcripts in heartwood, which is key enzyme responsible for santalol biosynthesis. However, the expression of three new SaTPS genes differed significantly from SaSSY in the essential oil-producing heartwood. Increased activities of antioxidant enzymes, superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, were detected in different tissues of S. album plants after applying 1 mM methyl jasmonate (MeJA) and 1 mM salicylic acid (SA), or exposure to 4°C, 38°C and high light intensity. MeJA and SA dramatically induced the expression of SaTPS1 and SaTPS2 in leaves. SaTPS1 to 3 transcripts were differentially activated among different tissues under adverse temperature and light stresses. In contrast, almost all SaSSY transcripts decreased in response to these environmental stresses, unlike SaTPS1 to 3. CONCLUSIONS: Multifunctional enzymes were biochemically characterized, including one chloroplastic mono-TPS and two cytosolic sesqui-TPSs in sandalwood. Our results suggest the ecological importance of these three new SaTPS genes in defensive response to biotic attack and abiotic stresses in S. album.


Asunto(s)
Transferasas Alquil y Aril/genética , Proteínas de Plantas/genética , Santalum/fisiología , Estrés Fisiológico/genética , Acetatos/farmacología , Transferasas Alquil y Aril/metabolismo , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Luz , Familia de Multigenes , Oxilipinas/farmacología , Filogenia , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacología , Santalum/efectos de los fármacos , Santalum/genética , Temperatura , Terpenos/análisis , Terpenos/química , Terpenos/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química
9.
Sci Rep ; 8(1): 17511, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30504917

RESUMEN

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used technique to investigate gene expression levels due to its high throughput, specificity, and sensitivity. An appropriate reference gene is essential for RT-qPCR analysis to obtain accurate and reliable results. To date, no reliable reference gene has been validated for the economically tropical tree, sandalwood (Santalum album L.). In this study, 13 candidate reference genes, including 12 novel putative reference genes selected from a large set of S. album transcriptome data, as well as the currently used ß-actin gene (ACT), were validated in different tissues (stem, leaf, root and callus), as well as callus tissue under salicylic acid (SA), jasmonic acid methyl ester (MeJA), and gibberellin (GA) treatments using geNorm, NormFinder, BestKeeper, Delta Ct and comprehensive RefFinder algorithms. Several novel candidate reference genes were much more stable than the currently used traditional gene ACT. ODD paired with Fbp1 for SA treatment, CSA and Fbp3 for MeJA treatment, PP2C and Fbp2 for GA treatment, as well as Fbp1 combined with Fbp2 for the total of three hormone treatments were the most accurate reference genes, respectively. FAB1A, when combined with PP2C, was identified as the most suitable reference gene combination for the four tissues tested, while the combination of HLMt, PPR and FAB1A were the most optimal reference genes for all of the experimental samples. In addition, to verify our results, the relative expression level of the SaSSy gene was evaluated by the validated reference genes and their combinations in the three S. album tissues and under MeJA treatment. The evaluated reference genes in this study will improve the accuracy of RT-qPCR analysis and will benefit S. album functional genomics studies in different tissues and under hormone stimuli in the future.


Asunto(s)
Perfilación de la Expresión Génica , Genes de Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Santalum/genética , Transcriptoma
10.
Sci Rep ; 7: 42165, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28169358

RESUMEN

Santalum album L. (Indian sandalwood) is an economically important plant species because of its ability to produce highly valued perfume oils. Little is known about the mechanisms by which S. album adapts to low temperatures. In this study, we obtained 100,445,724 raw reads by paired-end sequencing from S. album leaves. Physiological and transcriptomic changes in sandalwood seedlings exposed to 4 °C for 0-48 h were characterized. Cold stress induced the accumulation of malondialdehyde, proline and soluble carbohydrates, and increased the levels of antioxidants. A total of 4,424 differentially expressed genes were responsive to cold, including 3,075 cold-induced and 1,349 cold-repressed genes. When cold stress was prolonged, there was an increase in the expression of cold-responsive genes coding for transporters, responses to stimuli and stress, regulation of defense response, as well as genes related to signal transduction of all phytohormones. Candidate genes in the terpenoid biosynthetic pathway were identified, eight of which were significantly involved in the cold stress response. Gene expression analyses using qRT-PCR showed a peak in the accumulation of SaCBF2 to 4, 50-fold more than control leaves and roots following 12 h and 24 h of cold stress, respectively. The CBF-dependent pathway may play a crucial role in increasing cold tolerance.


Asunto(s)
Adaptación Fisiológica/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Proteínas de Plantas/genética , Santalum/genética , Transcriptoma , Antioxidantes/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Frío , Perfilación de la Expresión Génica , Malondialdehído/metabolismo , Reguladores del Crecimiento de las Plantas/biosíntesis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Aceites de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Prolina/metabolismo , Santalum/crecimiento & desarrollo , Santalum/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal , Terpenos/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA