Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Gene ; 923: 148561, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-38754570

RESUMEN

Intermuscular bones, which are present in numerous economically significant fish species, have a negative impact on the development of aquaculture. The Asb15b gene, primarily expressed in skeletal muscle, plays a crucial role in regulating protein turnover and the development of muscle fibers. It stimulates protein synthesis and controls the differentiation of muscle fibers. In this study, we employed CRISPR/Cas9 technology to generate homozygous zebrafish strains with 7 bp and 49 bp deletions in the Asb15b gene. Subsequent analyses using skeleton staining demonstrated a substantial reduction in the number of intermuscular bones in adult Asb15b-/- -7 bp and Asb15b-/- -49 bp mutants compared to the wild-type zebrafish, with decreases of 30 % (P < 0.001) and 40 % (P < 0.0001), respectively. Histological experiments further revealed that the diameter and number of muscle fibers in adult Asb15b-/- mutants did not exhibit significant changes when compared to wild-type zebrafish. Moreover, qRT-PCR experiments demonstrated significant differences in the expression of bmp6 and runx2b genes, which are key regulators of intermuscular bone development, during different stages of intermuscular bone development in Asb15b-/- mutants. This study strongly suggests that the Asb15b gene plays a crucial role in regulating intermuscular bone development in fish and lays the groundwork for further exploration of the role of the Asb15b gene in zebrafish intermuscular bone development.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Huesos/metabolismo , Desarrollo Óseo/genética , Sistemas CRISPR-Cas , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Repetición de Anquirina
2.
GM Crops Food ; 15(1): 1-15, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38625676

RESUMEN

Poplar stands as one of the primary afforestation trees globally. We successfully generated transgenic poplar trees characterized by enhanced biomass under identical nutrient conditions, through the overexpression of the pivotal nitrogen assimilation gene, pxAlaAT3. An environmental risk assessment was conducted for investigate the potential changes in rhizosphere soil associated with these overexpressing lines (OL). The results show that acid phosphatase activity was significantly altered under ammonium in OL compared to the wild-type control (WT), and a similar difference was observed for protease under nitrate. 16SrDNA sequencing indicated no significant divergence in rhizosphere soil microbial community diversity between WT and OL. Metabolomics analysis revealed that the OL caused minimal alterations in the metabolites of the rhizosphere soil, posing no potential harm to the environment. With these findings in mind, we anticipate that overexpressed plants will not adversely impact the surrounding soil environment.


Asunto(s)
Populus , Rizosfera , Biomasa , Endopeptidasas , Nitrógeno , Populus/genética , Suelo
3.
Cardiovasc Diabetol ; 23(1): 26, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218859

RESUMEN

BACKGROUND: To investigate the correlation between triglyceride glucose index (TyG) and collateral circulation in patients with chronic total occlusion (CTO) of coronary arteries in different glucose metabolic states. METHODS: A total of 681 patients who underwent coronary angiography between January 2020 and December 2021 to determine the presence of CTO lesions in at least one major coronary artery were retrospectively included in this study. Patients were categorized into a group with poor collateral circulation formation (Rentrop grade 0-1, n = 205) and a group with good collateral circulation formation (Rentrop grade 2-3, n = 476) according to the Rentrop scale. They were also categorized according to their glucose metabolism status: normal glucose regulation (NGR) (n = 139), prediabetes mellitus (Pre-DM) (n = 218), and diabetes mellitus (DM) (n = 324). Correlation between TyG index and collateral circulation formation was analyzed by logistic regression analysis and receiver operating characteristic (ROC) curves. RESULTS: Among patients with CTO, TyG index was significantly higher in the group with poor collateral circulation formation than in the group with good collateral circulation formation. Logistic regression analysis showed that TyG index was an independent risk factor for poor collateral circulation formation (OR 5.104, 95% CI 3.323-7.839, P < 0.001). The accuracy of TyG index in predicting collateral circulation formation was evaluated by the ROC curve, which had an area under the curve of 0.779 (95% CI 0.738-0.820, P < 0.001). The restrictive cubic spline curves showed that the risk of poor collateral circulation formation in the Pre-DM and DM groups was initially flat and finally increased rapidly, except for the NGR group. TyG index was significantly associated with an increased risk of poor collateral circulation formation in the Pre-DM and DM groups. CONCLUSIONS: TyG index was significantly associated with the risk of poor collateral circulation formation in patients with CTO, especially those with Pre-DM and DM.


Asunto(s)
Oclusión Coronaria , Vasos Coronarios , Humanos , Vasos Coronarios/diagnóstico por imagen , Glucosa , Estudios Retrospectivos , Triglicéridos , Circulación Colateral/fisiología , Oclusión Coronaria/diagnóstico por imagen , Glucemia , Circulación Coronaria
4.
Nano Lett ; 23(20): 9179-9186, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37831892

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) have extracellular regions (ECRs) containing GPCR autoproteolysis-inducing (GAIN) domains. The GAIN domain enables the ECR to self-cleave into N- and C-terminal fragments. However, the impact of force on the GAIN domain's conformation, critical for mechanosensitive aGPCR activation, remains unclear. Our study investigated the mechanical stability of GAIN domains in three aGPCRs (B, G, and L subfamilies) at a loading rate of 1 pN/s. We discovered that forces of a few piconewtons can destabilize the GAIN domains. In autocleaved aGPCRs ADGRG1/GPR56 and ADGRL1/LPHN1, these forces cause the GAIN domain detachment from the membrane-proximal Stachel sequence, preceded by partial unfolding. In noncleavable aGPCR ADGRB3/BAI3 and cleavage-deficient mutant ADGRG1/GPR56-T383G, complex mechanical unfolding of the GAIN domain occurs. Additionally, GAIN domain detachment happens during cell migration. Our findings support the mechanical activation hypothesis of aGPCRs, emphasizing the sensitivity of the GAIN domain structure and detachment to physiological force ranges.


Asunto(s)
Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/química , Modelos Moleculares , Adhesión Celular
5.
Front Cardiovasc Med ; 9: 1008212, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386339

RESUMEN

Objective: To correlate mean platelet volume lymphocyte ratio (MPVLR) and coronary collateral circulation (CCC) in patients with chronic total occlusion (CTO). Materials and methods: A total of 643 patients who were hospitalized at a single large academic medical center from January 2020 to October 2021 and had CTO lesions in at least one major coronary artery confirmed by coronary angiography were retrospectively analyzed. Patients were divided according to the Rentrop criteria into poorly formed CCC (Rentrop grade 0-1, n = 235) and well-formed CCC (Rentrop grade 2-3, n = 408) groups. Mean platelet volume lymphocyte ratio (MPVLR) was calculated from routine laboratory data (MPV divided by lymphocyte count). The clinical data of the two groups were compared, and relationships between MPVLR and CCC formation were analyzed. Results: The MPVLR of patients with poorly formed CCC was significantly higher than that of patients with well-formed CCC (7.82 ± 3.80 vs. 4.84 ± 1.42, P < 0.01). The prevalence of diabetes mellitus and C-reactive protein levels were significantly higher in the poor CCC group than in the good CCC group (P < 0.01), while the proportions of patients with CTO or multivessel lesions in the right coronary artery were significantly lower in the poor CCC group than in the good CCC group (P < 0.01). Multivariate logistic regression analysis identified MPVLR (OR: 2.101, 95% CI: 1.840-2.399, P < 0.01), C-reactive protein level (OR: 1.036, 95% CI: 1.008-1.064, P < 0.05), a history of diabetes mellitus (OR: 2.355, 95% CI: 1.532-3.621, P < 0.01), and right coronary CTO ratio (OR: 0.313, 95% CI: 0.202-0.485, P < 0.01) as independent risk factors for CCC formation. The area under the ROC curve of MPVLR for predicting poorly formed CCC was 0.82 (95% CI: 0.784-0.855, P < 0.01), the best cut-off point was 6.02 and the sensitivity and specificity of MPVLR for predicting poorly formed CCC were 72.3 and 82.4%, respectively. Conclusion: In patients with coronary CTO, MPVLR was negatively correlated with CCC and a high MPVLR level was an independent predictor of poorly formed CCC.

7.
Front Plant Sci ; 13: 910768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712571

RESUMEN

Calmodulin-binding transcription activators (CAMTAs) are evolutionarily conserved transcription factors and have multi-functions in plant development and stress response. However, identification and functional analysis of tea plant (Camellia sinensis) CAMTA genes (CsCAMTAs) are still lacking. Here, five CsCAMTAs were identified from tea plant genomic database. Their gene structures were similar except CsCAMTA2, and protein domains were conserved. Phylogenetic relationship classified the CsCAMTAs into three groups, CsCAMTA2 was in group I, and CsCAMTA1, 3 and CsCAMTA4, 5 were, respectively, in groups II and III. Analysis showed that stress and phytohormone response-related cis-elements were distributed in the promoters of CsCAMTA genes. Expression analysis showed that CsCAMTAs were differentially expressed in different organs and under various stress treatments of tea plants. Three-hundred and four hundred-one positive co-expressed genes of CsCAMTAs were identified under cold and drought, respectively. CsCAMTAs and their co-expressed genes constituted five independent co-expression networks. KEGG enrichment analysis of CsCAMTAs and the co-expressed genes revealed that hormone regulation, transcriptional regulation, and protein processing-related pathways were enriched under cold treatment, while pathways like hormone metabolism, lipid metabolism, and carbon metabolism were enriched under drought treatment. Protein interaction network analysis suggested that CsCAMTAs could bind (G/A/C)CGCG(C/G/T) or (A/C)CGTGT cis element in the target gene promoters, and transcriptional regulation might be the main way of CsCAMTA-mediated functional regulation. The study establishes a foundation for further function studies of CsCAMTA genes in stress response.

8.
Front Cardiovasc Med ; 9: 803233, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252386

RESUMEN

OBJECTIVE: To compare the clinical benefits of rivaroxaban and warfarin in patients with non-valvular atrial fibrillation (NVAF) with high bleeding risk. METHODS: A retrospective study was conducted on patients with high bleeding risk NVAF who were hospitalized at the First Affiliated Hospital of Zhengzhou University between May 31, 2016 and May 31, 2019 and took at least rivaroxaban and warfarin. The clinical benefits of both drugs were assessed by efficacy benefit and safety risk. The primary efficacy benefit was a composite end point for stroke (both ischemic and hemorrhagic) and systemic embolism. The secondary efficacy end points were death and myocardial infarction (MI). The principal safety end point was the composite end point of fatal bleeding and critical organ bleeding. RESULTS: A total of 1,246 patients with high bleeding risk were enrolled, including 787 patients in the rivaroxaban group and 459 patients in the warfarin group. Results of the primary efficacy benefit endpoint were obtained from 104 patients (13.2%) in the rivaroxaban group and 88 (19.2%) patients in the warfarin group (hazard ratio [HR]: 0.681; 95% confidence interval [CI]: 0.512-0.906; P < 0.001 for non-inferiority). The principal safety end points were observed in 49 (6.23%) patients in the rivaroxaban group and in 55 (11.98%) patients in the warfarin group (HR: 0.469 in the rivaroxaban group; 95% CI: 0.314-0.702; P < 0.001). With respect to secondary efficacy and benefit endpoints, 28 (3.56%) patients in the rivaroxaban group and 22 (4.79%) patients in the warfarin group died, with an HR of 0.760 (95% CI: 0.435-1.329; P = 0.336); 32 (4.07%) patients in the rivaroxaban group; and 26 (5.66%) patients in the warfarin group had MI, with an HR of 1.940 (95% CI: 0.495-1.069, P = 0.254) in the rivaroxaban group. CONCLUSIONS: Rivaroxaban is non-inferior to warfarin in the prevention of stroke and systemic embolism in patients with high blood NVAF. Rivaroxaban is superior to warfarin in reducing fatal bleeding and bleeding in critical organs. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trials Registry, identifier ChiCTR2100052454.

9.
J Biol Chem ; 296: 100776, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33992645

RESUMEN

The adhesion G protein-coupled receptor CD97 and its ligand complement decay-accelerating factor CD55 are important binding partners in the human immune system. Dysfunction in this binding has been linked to immune disorders such as multiple sclerosis and rheumatoid arthritis, as well as various cancers. Previous literatures have indicated that the CD97 includes 3 to 5 epidermal growth factor (EGF) domains at its N terminus and these EGF domains can bind to the N-terminal short consensus repeat (SCR) domains of CD55. However, the details of this interaction remain elusive, especially why the CD55 binds with the highest affinity to the shortest isoform of CD97 (EGF1,2,5). Herein, we designed a chimeric expression construct with the EGF1,2,5 domains of CD97 and the SCR1-4 domains of CD55 connected by a flexible linker and determined the complex structure by crystallography. Our data reveal that the two proteins adopt an overall antiparallel binding mode involving the SCR1-3 domains of CD55 and all three EGF domains of CD97. Mutagenesis data confirmed the importance of EGF5 in the interaction and explained the binding specificity between CD55 and CD97. The architecture of CD55-CD97 binding mode together with kinetics suggests a force-resisting shearing stretch geometry when forces applied to the C termini of both proteins in the circulating environment. The potential of the CD55-CD97 complex to withstand tensile force may provide a basis for the mechanosensing mechanism for activation of adhesion G protein-coupled receptors.


Asunto(s)
Antígenos CD/metabolismo , Antígenos CD55/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Antígenos CD/química , Antígenos CD55/química , Cristalografía por Rayos X , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptores Acoplados a Proteínas G/química
10.
Asian J Androl ; 23(3): 240-248, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33533740

RESUMEN

Spermatogonial stem cells (SSCs) have great applications in both reproductive and regenerative medicine. Primates including monkeys are very similar to humans with regard to physiology and pathology. Nevertheless, little is known about the isolation, the characteristics, and the culture of primate SSCs. This study was designed to identify, isolate, and culture monkey SSCs. Immunocytochemistry was used to identify markers for monkey SSCs. Glial cell line-derived neurotrophic factor family receptor alpha-1 (GFRA1)-enriched spermatogonia were isolated from monkeys, namely Macaca fascicularis (M. fascicularis), by two-step enzymatic digestion and magnetic-activated cell sorting, and they were cultured on precoated plates in the conditioned medium. Reverse transcription-polymerase chain reaction (RT-PCR), immunocytochemistry, and RNA sequencing were used to compare phenotype and transcriptomes in GFRA1-enriched spermatogonia between 0 day and 14 days of culture, and xenotransplantation was performed to evaluate the function of GFRA1-enriched spermatogonia. SSCs shared some phenotypes with rodent and human SSCs. GFRA1-enriched spermatogonia with high purity and viability were isolated from M. fascicularis testes. The freshly isolated cells expressed numerous markers for rodent SSCs, and they were cultured for 14 days. The expression of numerous SSC markers was maintained during the cultivation of GFRA1-enriched spermatogonia. RNA sequencing reflected a 97.3% similarity in global gene profiles between 0 day and 14 days of culture. The xenotransplantation assay indicated that the GFRA1-enriched spermatogonia formed colonies and proliferated in vivo in the recipient c-KitW/W (W) mutant mice. Collectively, GFRA1-enriched spermatogonia are monkey SSCs phenotypically both in vitro and in vivo. This study suggests that monkey might provide an alternative to human SSCs for basic research and application in human diseases.


Asunto(s)
Células Madre Germinales Adultas/citología , Separación Celular/métodos , Macaca fascicularis/clasificación , Análisis de Varianza , Animales , Separación Celular/estadística & datos numéricos , Complicaciones de la Diabetes , Modelos Animales de Enfermedad , Humanos , Ratas Sprague-Dawley
11.
Front Physiol ; 12: 813451, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153820

RESUMEN

Cold stress is an important threat in the life history of fish. However, current research on the tolerance mechanisms of fish to cold stress is incomplete. To explore the relevant molecular mechanisms enabling cold stress tolerance in fish, here we studied ZF4 cells subjected to short-term (4 days) low temperature stress and long-term (3 months) low temperature acclimation. The results showed that cell viability decreased and the cytoskeleton shrank under short-term (4 days) low temperature stress, while the cell viability and the cytoskeleton became normal after cold acclimation at 18°C for 3 months. Further, when the cells were transferred to the lower temperature (13°C), the survival rate was higher in the acclimated than non-acclimated group. By investigating the oxidative stress pathway, we found that the ROS (reactive oxygen species) content increased under short-term (4 days) cold stress, coupled with changes in glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) enzyme activity levels. In addition, overproduction of ROS disrupted physiological cellular homeostasis that generated apoptosis via the activation of the mitochondrial pathway. However, when compared with the non-domesticated group, both ROS levels and apoptosis were lowered in the long-term (3 months) domesticated cells. Taken together, these findings suggest that cold acclimation can improve the low temperature tolerance of the cells. This exploration of the mechanism by which zebrafish cells tolerate cold stress, thus contributes to laying the foundation for future study of the molecular mechanism of cold adaptation in fish.

12.
Stem Cell Res Ther ; 11(1): 408, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967715

RESUMEN

OBJECTIVES: This study is designed to generate and propagate human spermatogonial stem cells (SSCs) derived from human pluripotent stem cells (hPSCs). METHODS: hPSCs were differentiated into SSC-like cells (SSCLCs) by a three-step strategy. The biological characteristics of SSCLCs were detected by immunostaining with antibodies against SSC markers. The ability of self-renewal was measured by propagating for a long time and still maintaining SSCs morphological property. The differentiation potential of SSCLCs was determined by the generation of spermatocytes and haploid cells, which were identified by immunostaining and flow cytometry. The transcriptome analysis of SSCLCs was performed by RNA sequencing. The biological function of SSCLCs was assessed by xeno-transplantation into busulfan-treated mouse testes. RESULTS: SSCLCs were efficiently generated by a 3-step strategy. The SSCLCs displayed a grape-like morphology and expressed SSC markers. Moreover, SSCLCs could be propagated for approximately 4 months and still maintained their morphological properties. Furthermore, SSCLCs could differentiate into spermatocytes and haploid cells. In addition, SSCLCs displayed a similar gene expression pattern as human GPR125+ spermatogonia derived from human testicular tissues. And more, SSCLCs could survive and home at the base membrane of seminiferous tubules. CONCLUSION: SSCLCs were successfully derived from hPSCs and propagated for a long time. The SSCLCs resembled their counterpart human GPR125+ spermatogonia, as evidenced by the grape-like morphology, transcriptome, homing, and functional characteristics. Therefore, hPSC-derived SSCLCs may provide a reliable cell source for studying human SSCs biological properties, disease modeling, and drug toxicity screening.


Asunto(s)
Células Madre Germinales Adultas , Espermatogonias , Diferenciación Celular , Células Cultivadas , Humanos , Masculino , Reproducción , Túbulos Seminíferos , Testículo
13.
Mol Ther Nucleic Acids ; 12: 319-336, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30195770

RESUMEN

Human spermatogonial stem cells (SSCs) could have significant applications in reproductive medicine and regenerative medicine because of their great plasticity. The fate determinations of human SSCs are mediated by epigenetic factors. However, nothing is known about the regulation of non-coding RNA on human SSCs. Here we have explored for the first time the expression, function, and target of miR-663a in human SSCs. MiR-663a was upregulated in human spermatogonia compared with pachytene spermatocytes, as indicated by microRNA microarray and real-time PCR. CCK-8 and 5-Ethynyl-2'-deoxyuridine (EDU) assays revealed that miR-663a stimulated cell proliferation and DNA synthesis of human SSCs. Annexin V and propidium iodide (PI) staining and flow cytometry demonstrated that miR-663a inhibited early and late apoptosis of human SSCs. Furthermore, NFIX was predicted and verified as a direct target of miR-663a. NFIX silencing led to an enhancement of cell proliferation and DNA synthesis and a reduction of the early apoptosis of human SSCs. NFIX silencing neutralized the influence of miR-663a inhibitor on the proliferation and apoptosis of human SSCs. Finally, both miR-663a mimics and NFIX silencing upregulated the levels of cell cycle regulators, including Cyclin A2, Cyclin B1, and Cyclin E1, whereas miR-663a inhibitor had an adverse effect. Knockdown of Cyclin A2, Cyclin B1, and Cyclin E1 led to the decrease in the proliferation of human SSCs. Collectively, miR-663a has been identified as the first microRNA that promotes the proliferation and DNA synthesis and suppresses the early apoptosis of human SSCs by targeting NFIX via cell cycle regulators Cyclin A2, Cyclin B1, and Cyclin E1. This study thus provides novel insights into the molecular mechanisms underlying human spermatogenesis, and it could offer novel targets for treating male infertility and other human diseases.

14.
Mol Ther Nucleic Acids ; 12: 769-786, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30141410

RESUMEN

Spermatogonial stem cells (SSCs) have significant applications in reproductive and regenerative medicine. However, nothing is known about genes in mediating human SSCs. Here we have explored for the first time the function and mechanism of P21-activated kinase 1 (PAK1) in regulating the proliferation and apoptosis of the human SSC line. PAK1 level was upregulated by epidermal growth factor (EGF), but not glial cell line-derived neurotrophic factor (GDNF) or fibroblast growth factor 2 (FGF2). PAK1 promoted proliferation and DNA synthesis of the human SSC line, whereas PAK1 suppressed its apoptosis in vitro and in vivo. RNA sequencing identified that PDK1, ZNF367, and KDR levels were downregulated by PAK1 knockdown. Immunoprecipitation and Western blots demonstrated that PAK1 interacted with PDK1. PDK1 and KDR levels were decreased by ZNF367-small interfering RNAs (siRNAs). The proliferation of the human SSC line was reduced by PDK1-, KDR-, and ZNF367-siRNAs, whereas its apoptosis was enhanced by these siRNAs. The levels of phos-ERK1/2, phos-AKT, and cyclin A were decreased by PAK1-siRNAs. Tissue arrays showed that PAK1 level was low in non-obstructive azoospermia patients. Collectively, PAK1 was identified as the first molecule that controls proliferation and apoptosis of the human SSC line through PDK1/KDR/ZNF367 and the ERK1/2 and AKT pathways. This study provides data on novel gene regulation and networks underlying the fate of human SSCs, and it offers new molecular targets for human SSCs in translational medicine.

15.
Methods Mol Biol ; 1748: 191-202, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29453573

RESUMEN

Sertoli cells, as the unique somatic cells within the seminiferous tubules, play essential roles in regulating normal spermatogenesis. In addition, recent studies have demonstrated that Sertoli cells could have significant applications in regenerative medicine due to their great plasticity. However, the roles of genes in controlling the fate determinations of human Sertoli cells remain largely unknown. Silencing genes of human Sertoli cells utilizing small interfering RNAs (siRNAs) is an important method to explore their functions and mechanisms in human Sertoli cells. We isolated and identified human Sertoli cells. RNA interference (RNAi) was employed to probe the roles and signaling pathways of BMP6 and BMP4 in mediating the proliferation and apoptosis of human Sertoli cells. Specifically, siRNAs against BMP6 and BMP4 were used to knock down the expression levels of BMP6 and BMP4 and examine the function and mechanism in controlling the fate decisions of human Sertoli cells. In this chapter, we provided the detailed methods of RNAi in silencing BMP6 gene of human Sertoli cells. Quantitative real-time PCR demonstrated that the designed BMP6 siRNAs apparently silenced BMP6 mRNA in human Sertoli cells at 24 h after transfection. Western blots showed that the siRNAs silenced the expression of BMP6 protein effectively at 48 h after transfection. In summary, siRNAs can effectively and specifically knock down targeting genes at both transcriptional and translational levels utilizing RNAi in human Sertoli cells.


Asunto(s)
Silenciador del Gen , Osteoartritis/metabolismo , ARN Interferente Pequeño/genética , Células de Sertoli/metabolismo , Proteína Morfogenética Ósea 4/antagonistas & inhibidores , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 6/antagonistas & inhibidores , Proteína Morfogenética Ósea 6/genética , Células Cultivadas , Humanos , Masculino , Osteoartritis/patología , Células de Sertoli/citología
16.
Cell Death Dis ; 9(2): 76, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29362488

RESUMEN

Infertility affects 10-15% of couples worldwide, and male factors account for 50%. Spermatogenesis is precisely regulated by genetic factors, and the mutations of genes result in abnormal spermatogenesis and eventual male infertility. The aim of this study was to explore the role and transcriptional regulation of P63 in the apoptosis and mouse spermatogenesis. P63 protein was decreased in male germ cells of P63(+/-) mice compared with wild-type mice. There was no obvious difference in testis weight, sperm motility, and fecundity between P63(+/-) and wild-type mice. However, abnormal germ cells were frequently observed in P63(+/-) mice at 2 months old. Notably, apoptotic male germ cells and the percentage of abnormal sperm were significantly enhanced in P63(+/-) mice compared to wild-type mice. Spermatogonia, pachytene spermatocytes and round spermatids were isolated from P63(+/-) and wild-type mice using STA-PUT velocity sedimentation, and they were identified phenotypically with high purities. RNA sequencing demonstrated distinct transcription profiles in spermatogonia, pachytene spermatocytes, and round spermatids between P63(+/-) mice and wild-type mice. In total, there were 645 differentially expressed genes (DEGs) in spermatogonia, 106 DEGs in pachytene spermatocytes, and 1152 in round spermatids between P63(+/-) mice and wild-type mice. Real time PCR verified a number of DEGs identified by RNA sequencing. Gene ontology annotation and pathway analyzes further indicated that certain key genes, e.g., Ccnd2, Tgfa, Hes5, Insl3, Kit, Lef1, and Jun were involved in apoptosis, while Dazl, Kit, Pld6, Cdkn2d, Stra8, and Ubr2 were associated with regulating spermatogenesis. Collectively, these results implicate that P63 mediates the apoptosis of male germ cells and regulates three stages of spermatogenesis transcriptionally. This study could provide novel targets for the diagnosis and treatment of male infertility.


Asunto(s)
Apoptosis/genética , Regulación del Desarrollo de la Expresión Génica , Fosfoproteínas/metabolismo , Espermatogénesis/genética , Espermatozoides/citología , Espermatozoides/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Animales , Forma de la Célula , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Genotipo , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Fenotipo , Fosfoproteínas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Espermátides/citología , Espermátides/metabolismo , Espermatocitos/citología , Espermatocitos/metabolismo , Espermatogonias/citología , Espermatogonias/metabolismo , Espermatozoides/ultraestructura , Transactivadores/genética
17.
Cell Death Differ ; 25(4): 749-766, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29305586

RESUMEN

Generation of functional spermatids from human spermatogonial stem cells (SSCs) in vitro is of utmost importance for uncovering mechanisms underlying human germ cell development and treating infertility. Here we report a three-dimensional-induced (3D-I) system by which human SSCs were efficiently differentiated into functional haploid spermatids. Human SSCs were isolated and identified phenotypically. Meiotic chromatin spreads and DNA content assays revealed that spermatocytes and haploid cells were effectively generated from human SSCs by 3D-I system. Haploid cells derived from human SSCs harbored normal chromosomes and excluded Y chromosome microdeletions. RNA sequencing and bisulfite sequencing analyses reflected similarities in global gene profiles and DNA methylation in human SSCs-derived spermatids and normal round spermatids. Significantly, haploid spermatids generated from human SSCs via 3D-I system were capable of fertilizing mouse oocytes, which subsequently enabled the development of hybrid embryos. This study thus provides invaluable human male gametes for treating male infertility.


Asunto(s)
Diferenciación Celular , Haploidia , Infertilidad Masculina/metabolismo , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/metabolismo , Espermátides/metabolismo , Espermatogénesis , Células Madre/metabolismo , Adolescente , Adulto , Animales , Técnicas de Cultivo de Célula , Deleción Cromosómica , Cromosomas Humanos Y/genética , Cromosomas Humanos Y/metabolismo , Femenino , Humanos , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Masculino , Ratones , Persona de Mediana Edad , Aberraciones Cromosómicas Sexuales , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/genética , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/patología , Espermátides/patología , Células Madre/patología
18.
Mol Ther Nucleic Acids ; 9: 182-194, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29246297

RESUMEN

Human spermatogenesis includes three main stages, namely, the mitosis of spermatogonia, meiosis of spermatocytes, and spermiogenesis of spermatids, which are precisely regulated by epigenetic and genetic factors. Abnormality of epigenetic and genetic factors can result in aberrant spermatogenesis and eventual male infertility. However, epigenetic regulators in controlling each stage of normal and abnormal human spermatogenesis remain unknown. Here, we have revealed for the first time the distinct microRNA profiles in human spermatogonia, pachytene spermatocytes, and round spermatids between obstructive azoospermia (OA) patients and non-obstructive azoospermia (NOA) patients. Human spermatogonia, pachytene spermatocytes, and round spermatids from OA patients and NOA patients were isolated using STA-PUT velocity sedimentation and identified by numerous hallmarks for these cells. RNA deep sequencing showed that 396 microRNAs were differentially expressed in human spermatogonia between OA patients and NOA patients and 395 differentially expressed microRNAs were found in human pachytene spermatocytes between OA patients and NOA patients. Moreover, 378 microRNAs were differentially expressed in human round spermatids between OA patients and NOA patients. The differential expression of numerous microRNAs identified by RNA deep sequencing was verified by real-time PCR. Moreover, a number of novel targeting genes for microRNAs were predicted using various kinds of software and further verified by real-time PCR. This study thus sheds novel insights into epigenetic regulation of human normal spermatogenesis and the etiology of azoospermia, and it could offer new targets for molecular therapy to treat male infertility.

19.
Sci Rep ; 7: 45298, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387750

RESUMEN

Sertoli cells are essential for regulating normal spermatogenesis. However, the mechanisms underlying human Sertoli cell development remain largely elusive. Here we examined the function and signaling pathways of BMP6 in regulating human Sertoli cells. RT-PCR, immunocytochemistry and Western blots revealed that BMP6 and its multiple receptors were expressed in human Sertoli cells. CCK-8 and EDU assays showed that BMP6 promoted the proliferation of Sertoli cells. Conversely, BMP6 siRNAs inhibited the division of these cells. Annexin V/PI assay indicated that BMP6 reduced the apoptosis in human Sertoli cells, whereas BMP6 knockdown assumed reverse effects. BMP6 enhanced the expression levels of ZO1, SCF, GDNF and AR in human Sertoli cells, and ELISA assay showed an increase of SCF by BMP6 and a reduction by BMP6 siRNAs. Notably, Smad2/3 phosphorylation and cyclin D1 were enhanced by BMP6 and decreased by BMP6 siRNAs in human Sertoli cells. The levels of DACH1 and TFAP2A were increased by BMP6 and reduced by BMP6 siRNAs, and the growth of human Sertoli cells was inhibited by these siRNAs. Collectively, these results suggest that BMP6 regulates the proliferation and apoptosis of human Sertoli cells via activating the Smad2/3/cyclin D1 and DACH1 and TFAP2A pathway.


Asunto(s)
Proteína Morfogenética Ósea 6/metabolismo , Ciclina D1/metabolismo , Proteínas del Ojo/genética , Células de Sertoli/citología , Proteínas Smad/metabolismo , Factor de Transcripción AP-2/genética , Factores de Transcripción/genética , Apoptosis , Proteína Morfogenética Ósea 6/genética , Proliferación Celular , Células Cultivadas , Proteínas del Ojo/metabolismo , Humanos , Masculino , Fosforilación , Células de Sertoli/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Transcripción AP-2/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional
20.
Oncotarget ; 8(10): 16553-16570, 2017 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-28152522

RESUMEN

Sertoli cells are required for normal spermatogenesis and they can be reprogrammed to other types of functional cells. However, the number of primary Sertoli cells is rare and human Sertoli cell line is unavailable. In this study, we have for the first time reported a stable human Sertoli cell line, namely hS1 cells, by overexpression of human telomerase. The hS1 cells expressed a number of hallmarks for human Sertoli cells, including SOX9, WT1, GDNF, SCF, BMP4, BMP6, GATA4, and VIM, and they were negative for 3ß-HSD, SMA, and VASA. Higher levels of AR and FSHR were observed in hS1 cells compared to primary human Sertoli cells. Microarray analysis showed that 70.4% of global gene profiles of hS1 cells were similar to primary human Sertoli cells. Proliferation assay demonstrated that hS1 cells proliferated rapidly and they could be passaged for more than 30 times in 6 months. Neither Y chromosome microdeletion nor tumorgenesis was detected in this cell line and 90% normal karyotypes existed in hS1 cells. Collectively, we have established the first human Sertoli cell line with phenotype of primary human Sertoli cells, an unlimited proliferation potential and high safety, which could offer sufficient human Sertoli cells for basic research as well as reproductive and regenerative medicine.


Asunto(s)
Línea Celular , Células de Sertoli/enzimología , Telomerasa/biosíntesis , Proliferación Celular/fisiología , Humanos , Masculino , Telomerasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA