Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 518, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698103

RESUMEN

Myoblast proliferation and differentiation are essential for skeletal muscle development. In this study, we generated the expression profiles of mRNAs, long noncoding RNAs (lncRNAs), and microRNAs (miRNAs) in different developmental stages of chicken primary myoblasts (CPMs) using RNA sequencing (RNA-seq) technology. The dual luciferase reporter system was performed using chicken embryonic fibroblast cells (DF-1), and functional studies quantitative real-time polymerase chain reaction (qPCR), cell counting kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), flow cytometry cycle, RNA fluorescence in situ hybridization (RNA-FISH), immunofluorescence, and western blotting assay. Our research demonstrated that miR-301a-5p had a targeted binding ability to lncMDP1 and ChaC glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1). The results revealed that lncMDP1 regulated the proliferation and differentiation of myoblasts via regulating the miR-301a-5p/CHAC1 axis, and CHAC1 promotes muscle regeneration. This study fulfilled the molecular regulatory network of skeletal muscle development and providing an important theoretical reference for the future improvement of chicken meat performance and meat quality.


Asunto(s)
Pollos , Perfilación de la Expresión Génica , MicroARNs , Desarrollo de Músculos , ARN Largo no Codificante , Animales , MicroARNs/genética , MicroARNs/metabolismo , Desarrollo de Músculos/genética , Pollos/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Diferenciación Celular/genética , Proliferación Celular , Mioblastos/metabolismo , Mioblastos/citología , Embrión de Pollo
2.
J Agric Food Chem ; 72(21): 12240-12250, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38764183

RESUMEN

LIM domain binding 3 (LDB3) serves as a striated muscle-specific Z-band alternatively spliced protein that plays an important role in mammalian skeletal muscle development, but its regulatory role and molecular mechanism in avian muscle development are still unclear. In this study, we reanalyzed RNA sequencing data sets of 1415 samples from 21 chicken tissues published in the NCBI GEO database. First, three variants (LDB3-X, LDB3-XN1, and LDB3-XN2) generated by alternative splicing of the LDB3 gene were identified in chicken skeletal muscle, among which LDB3-XN1 and LDB3-XN2 are novel variants. LDB3-X and LDB3-XN1 are derived from exon skipping in chicken skeletal muscle at the E18-D7 stage and share three LIM domains, but LDB3-XN2 lacks a LIM domain. Our results preliminarily suggest that the formation of three variants of LDB3 is regulated by RBM20. The three splice isomers have divergent functions in skeletal muscle according to in vitro and in vivo assays. Finally, we identified the mechanism by which different variants play different roles through interactions with IGF2BP1 and MYHC, which promote the proliferation and differentiation of chicken myoblasts, in turn regulating chicken myogenesis. In conclusion, this study revealed the divergent roles of three LDB3 variants in chicken myogenesis and muscle remodeling and demonstrated their regulatory mechanism through protein-protein interactions.


Asunto(s)
Empalme Alternativo , Pollos , Proteínas con Dominio LIM , Desarrollo de Músculos , Músculo Esquelético , Animales , Pollos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/química , Músculo Esquelético/crecimiento & desarrollo , Desarrollo de Músculos/genética , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Mioblastos/metabolismo , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Proteínas Aviares/química , Diferenciación Celular , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química
3.
Poult Sci ; 103(3): 103407, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38198913

RESUMEN

During myogenesis and regeneration, the proliferation and differentiation of myoblasts play key regulatory roles and may be regulated by many genes. In this study, we analyzed the transcriptomic data of chicken primary myoblasts at different periods of proliferation and differentiation with protein‒protein interaction network, and the results indicated that there was an interaction between cyclin-dependent kinase 1 (CDK1) and ribonucleotide reductase regulatory subunit M2 (RRM2). Previous studies in mammals have a role for RRM2 in skeletal muscle development as well as cell growth, but the role of RRM2 in chicken is unclear. In this study, we investigated the effects of RRM2 on skeletal muscle development and regeneration in chickens in vitro and in vivo. The interaction between RRM2 and CDK1 was initially identified by co-immunoprecipitation and mass spectrometry. Through a dual luciferase reporter assay and quantitative real-time PCR, we identified the core promoter region of RRM2, which is regulated by the SP1 transcription factor. In this study, through cell counting kit-8 assays, 5-ethynyl-2'-deoxyuridine incorporation assays, flow cytometry, immunofluorescence staining, and Western blot analysis, we demonstrated that RRM2 promoted the proliferation and inhibited the differentiation of myoblasts. In vivo studies showed that RRM2 reduced the diameter of muscle fibers and slowed skeletal muscle regeneration. In conclusion, these data provide preliminary insights into the biological functions of RRM2 in chicken muscle development and skeletal muscle regeneration.


Asunto(s)
Pollos , Oxidorreductasas , Animales , Pollos/genética , Fibras Musculares Esqueléticas , Proliferación Celular , Regeneración , Mamíferos
4.
Animals (Basel) ; 13(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37508090

RESUMEN

Skeletal muscle is an essential tissue in meat-producing animals, and meat-producing traits have been a hot topic in chicken genetic breeding research. Current research shows that creatine kinase M-type-like (CKM) is one of the most abundant proteins in skeletal muscle and plays an important role in the growth and development of skeletal muscle, but its role in the development of chicken skeletal muscle is still unclear. Via RNA sequencing (RNA-seq), we found that CKM was highly expressed in chicken breast muscle tissue. In this study, the expression profile of CKM was examined by quantitative real-time PCR (qPCR), and overexpression and RNA interference techniques were used to explore the functions of CKM in the proliferation, apoptosis and differentiation of chicken primary myoblasts (CPMs). It was shown that CKM was specifically highly expressed in breast muscle and leg muscle and was highly expressed in stage 16 embryonic muscle, while CKM inhibited proliferation, promoted the apoptosis and differentiation of CPMs and was involved in regulating chicken myogenesis. Transcriptome sequencing was used to identify genes that were differentially expressed in CPMs after CKM disruption, and bioinformatics analysis showed that CKM was involved in regulating chicken myogenesis. In summary, CKM plays an important role in skeletal muscle development during chicken growth and development.

5.
Genes (Basel) ; 14(2)2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36833266

RESUMEN

A growing number of studies have shown that members of the ankyrin repeat and suppressors of cytokine signaling (SOCS) box-containing protein (ASB) family are extensively involved in biological processes such as cell growth, tissue development, insulin signaling, ubiquitination, protein degradation, and skeletal muscle membrane protein formation, while the specific biological role of ankyrin-repeat and SOCS box protein 9 (ASB9) remains unclear. In this study, a 21 bp indel in the intron of ASB9 was identified for the first time in 2641 individuals from 11 different breeds and an F2 resource population, and differences were observed among individuals with different genotypes (II, ID, and DD). An association study of a cross-designed F2 resource population revealed that the 21-bp indel was significantly related to growth and carcass traits. The significantly associated growth traits were body weight (BW) at 4, 6, 8, 10, and 12 weeks of age; sternal length (SL) at 4, 8, and 12 weeks of age; body slope length (BSL) at 4, 8, and 12 weeks of age; shank girth (SG) at 4 and 12 weeks of age; tibia length (TL) at 12 weeks of age; and pelvic width (PW) at 4 weeks of age (p < 0.05). This indel was also significantly correlated with carcass traits including semievisceration weight (SEW), evisceration weight (EW), claw weight (CLW), breast muscle weight (BMW), leg weight (LeW), leg muscle weight (LMW), claw rate (CLR), and shedding weight (ShW) (p < 0.05). In commercial broilers, the II genotype was the dominant genotype and underwent extensive selection. Interestingly, the ASB9 gene was expressed at significantly higher levels in the leg muscles of Arbor Acres broilers than those of Lushi chickens, while the opposite was true for the breast muscles. In summary, the 21-bp indel in the ASB9 gene significantly influenced the expression of the ASB9 gene in muscle tissue and was associated with multiple growth and carcass traits in the F2 resource population. These findings suggested that the 21-bp indel within the ASB9 gene could be used in marker-assisted selection breeding for traits related to chicken growth.


Asunto(s)
Pollos , Animales , Pollos/genética , Fenotipo , Genotipo
6.
Oxid Med Cell Longev ; 2022: 5725442, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466090

RESUMEN

The intestinal microbiota and its metabolites play vital roles in host growth, development, and immune regulation. This study analyzed the microbial community distribution and the cytokine and short-chain fatty acid (SCFA) content of cecal contents (Con group), soft feces (SF group), and hard feces (HF group) of 60-day-old Hyplus rabbits and verified the effect of soft feces on the cecal immune microenvironment by coprophagy prevention (CP). The results showed that there were significant differences in the levels of phylum and genus composition, cytokines, and SCFAs among the Con group, SF group, and HF group. The correlation analysis of cytokines and SCFAs with differential microbial communities showed that Muribaculaceae, Ruminococcaceae_UCG-014, Ruminococcaceae_NK4A214_group, and Christensenellaceae_R-7_Group are closely related to cytokines and SCFAs. After CP treatment, the contents of propionic acid, butyric acid, IL-4, and IL-10 in cecum decreased significantly, whereas TNF-α and IL-1ß increased significantly. Moreover, the inhibition of coprophagy led to the downregulation of the expression levels of tight junction proteins (Claudin-1, Occludin, and ZO-1) related to intestinal inflammation and intestinal barrier function, and the ring-like structure of ZO-1 was disrupted. In conclusion, coprophagy can not only help rabbits obtain more probiotics and SCFAs but also play an essential role in improving the immune microenvironment of cecum.


Asunto(s)
Ciego , Microbiota , Animales , Conejos , Metaboloma , Citocinas , Ácido Butírico , Heces
7.
BMC Genomics ; 23(1): 138, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35168561

RESUMEN

BACKGROUND: Molecular breeding accelerates the speed of animal breeding. Screening molecular markers that can affect economic traits through genome-wide association studies (GWAS) can provide a theoretical basis for molecular breeding. At present, a large number of molecular markers have been screened in poultry research, but few reports on how molecular markers affect economic traits exist. It is particularly important to reveal the action mechanisms of molecular markers, which can provide more accurate information for molecular breeding. RESULTS: The aim of this study was to investigate the relationships between two indels (NUDT15-indel-2777 and NUDT15-indel-1673) in the promoter region of NUDT15 and growth and carcass traits in chickens and to explore the regulatory mechanism of NUDT15. Significant differences were found in genotype and allele frequencies among commercial broilers, commercial laying hens and dual-purpose chickens. The results of association analyses showed that these two indel loci could significantly affect growth traits, such as body weight, and carcass traits. Tissue expression profiling at E12 showed that the expression of NUDT15 was significantly higher in skeletal muscle, and time-expression profiling of leg muscle showed that the expression of NUDT15 in myoblasts was significantly higher in the E10 and E12 proliferation stages than in other stages. Promoter activity analysis showed that pro-1673-I and pro-1673-D significantly inhibited promoter activity, and the promoter activity of pro-1673-D was significantly lower than that of pro-1673-I. In addition, when NUDT15 was overexpressed or underwent interference in chicken primary myoblasts (CPMs), NUDT15 could inhibit the proliferation of CPMs. CONCLUSION: The results suggest that the studied indels in the promoter region of NUDT15 may regulate the proliferation of CPMs by affecting NUDT15 expression, ultimately affecting the growth and carcass traits of chickens. These indel polymorphisms may be used together as molecular markers for improving economic traits in chickens.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Animales , Proliferación Celular , Pollos/genética , Femenino , Genotipo , Mutación INDEL , Mioblastos , Regiones Promotoras Genéticas
8.
Chem Pharm Bull (Tokyo) ; 58(7): 991-4, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20606355

RESUMEN

Three new sesquiterpenoids, isodauc-7(14)-en-6alpha,10beta-diol (1), 10beta-hydroxyisodauc-6-en-14-al (2), and (7S(*))-opposit-4(15)-en-1beta,7-diol (4), along with ten known compounds have been isolated from the aerial parts of Senecio argunensis. Their structures were established by means of detailed spectroscopic analysis including IR, HR-MS, and 1D NMR and 2D NMR data. The sesquiterpenoids were assayed against Escherichia coli, Staphylococcus aureus and Bacillus subtilis. Compounds 4 exhibited weak antibacterial activity against Escherichia coli and Bacillus subtilis.


Asunto(s)
Antibacterianos/química , Senecio/química , Sesquiterpenos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Extractos Vegetales/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA