Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biochem ; 164(6): 437-447, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30204880

RESUMEN

A newly isolated binding protein of peroxisomal targeting signal type 2 (PTS2) receptor Pex7, termed P7BP2, is transported into peroxisomes by binding to the longer isoform of Pex5p, Pex5pL, via Pex7p. The binding to Pex7p and peroxisomal localization of P7BP2 depends on the cleavable PTS2 in the N-terminal region, suggesting that P7BP2 is a new PTS2 protein. By search on human database, three AAA+ domains are found in the N-terminal half of P7BP2. Protein sequence alignment and motif search reveal that in the C-terminal region P7BP2 contains additional structural domains featuring weak but sufficient homology to AAA+ domain. P7BP2 behaves as a monomer in gel-filtration chromatography and the single molecule observed under atomic force microscope shapes a disc-like ring. Collectively, these results suggest that P7BP2 is a novel dynein-type AAA+ family protein, of which domains are arranged into a pseudo-hexameric ring structure.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Receptor de la Señal 2 de Direccionamiento al Peroxisoma/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Animales , Células CHO , Cricetulus , Sistemas Especialistas , Células HeLa , Humanos , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Receptor de la Señal 2 de Direccionamiento al Peroxisoma/química , Receptor de la Señal 2 de Direccionamiento al Peroxisoma/genética , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/química , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Peroxisomas/enzimología , Dominios y Motivos de Interacción de Proteínas , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteolisis , Proteómica/métodos , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína
2.
Biol Open ; 4(6): 710-21, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25910939

RESUMEN

Pex11p family proteins are key players in peroxisomal fission, but their molecular mechanisms remains mostly unknown. In the present study, overexpression of Pex11pß caused substantial vesiculation of peroxisomes in mammalian cells. This vesicle formation was dependent on dynamin-like protein 1 (DLP1) and mitochondrial fission factor (Mff), as knockdown of these proteins diminished peroxisomal fission after Pex11pß overexpression. The fission-deficient peroxisomes exhibited an elongated morphology, and peroxisomal marker proteins, such as Pex14p or matrix proteins harboring peroxisomal targeting signal 1, were discernible in a segmented staining pattern, like beads on a string. Endogenous Pex11pß was also distributed a striped pattern, but which was not coincide with Pex14p and PTS1 matrix proteins. Altered morphology of the lipid membrane was observed when recombinant Pex11p proteins were introduced into proteo-liposomes. Constriction of proteo-liposomes was observed under confocal microscopy and electron microscopy, and the reconstituted Pex11pß protein localized to the membrane constriction site. Introducing point mutations into the N-terminal amphiphathic helix of Pex11pß strongly reduced peroxisomal fission, and decreased the oligomer formation. These results suggest that Pex11p contributes to the morphogenesis of the peroxisomal membrane, which is required for subsequent fission by DLP1.

3.
J Hum Genet ; 59(7): 387-92, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24849933

RESUMEN

Rhizomelic chondrodysplasia punctata (RCDP) is an autosomal recessive disorder due to the deficiency in ether lipid synthesis. RCDP type 1, the most prominent type, is caused by the dysfunction of the receptor of peroxisome targeting signal type 2, Pex7 (peroxisomal biogenesis factor 7), and the rest of the patients, RCDP types 2 and 3, have defects in peroxisomal enzymes catalyzing the initial two steps of alkyl-phospholipid synthesis, glyceronephosphate O-acyltransferase and alkylglycerone phosphate synthase (Agps). We herein investigated defects of two patients with RCDP type 3. Patient 1 had a novel missense mutation, T1533G, resulting in the I511M substitution in Agps. The plasmalogen level was mildly reduced, whereas the protein level and peroxisomal localization of Agps-I511M in fibroblasts were normal as in the control fibroblasts. Structure prediction analysis suggested that the mutated residue was located in the helix α15 on the surface of V-shaped active site tunnel in Agps, likely accounting for the mild defects of plasmalogen synthesis. These results strongly suggest that an individual with mildly affected level of plasmalogen synthesis develops RCDP. In fibroblasts from patient 2, the expression of AGPS mRNA and Agps protein was severely affected, thereby giving rise to the strong reduction of plasmalogen synthesis.


Asunto(s)
Transferasas Alquil y Aril/genética , Condrodisplasia Punctata Rizomélica/genética , Condrodisplasia Punctata Rizomélica/metabolismo , Mutación , Plasmalógenos/metabolismo , Transferasas Alquil y Aril/química , Línea Celular , Preescolar , Análisis Mutacional de ADN , Femenino , Fibroblastos/metabolismo , Expresión Génica , Humanos , Modelos Moleculares , Conformación Proteica , ARN Mensajero/genética
4.
Open Biol ; 4: 130142, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24598262

RESUMEN

The type II AAA+ protein p97 is involved in numerous cellular activities, including endoplasmic reticulum-associated degradation, transcription activation, membrane fusion and cell-cycle control. These activities are at least in part regulated by the ubiquitin system, in which p97 is thought to target ubiquitylated protein substrates within macromolecular complexes and assist in their extraction or disassembly. Although ATPase activity is essential for p97 function, little is known about how ATP binding or hydrolysis is coupled with p97 conformational changes and substrate remodelling. Here, we have used single-particle electron cryomicroscopy (cryo-EM) to study the effect of nucleotides on p97 conformation. We have identified conformational heterogeneity within the cryo-EM datasets from which we have resolved two major p97 conformations. A comparison of conformations reveals inter-ring rotations upon nucleotide binding and hydrolysis that may be linked to the remodelling of target protein complexes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Degradación Asociada con el Retículo Endoplásmico , Humanos , Nanopartículas del Metal/química , Microscopía de Fuerza Atómica , Simulación del Acoplamiento Molecular , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
5.
J Biol Chem ; 287(11): 8561-70, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22270372

RESUMEN

p97/valosin-containing protein (VCP) is a type II ATPase associated with various cellular activities that forms a homohexamer with each protomer containing an N-terminal domain (N-domain); two ATPase domains, D1 and D2; and a disordered C-terminal region. Little is known about the role of the N-domain or the C-terminal region in the p97 ATPase cycle. In the p97-associated human disease inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, the majority of missense mutations are located at the N-domain D1 interface. Structure-based predictions suggest that such mutations affect the interaction of the N-domain with D1. Here we have tested ten major inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia-linked mutants for ATPase activity and found that all have increased activity over the wild type, with one mutant, p97(A232E), having three times higher activity. Further mutagenesis of p97(A232E) shows that the increase in ATPase activity is mediated through D2 and requires both the N-domain and a flexible ND1 linker. A disulfide mutation that locks the N-domain to D1 in a coplanar position reversibly abrogates ATPase activity. A cryo-EM reconstruction of p97(A232E) suggests that the N-domains are flexible. Removal of the C-terminal region also reduces ATPase activity. Taken together, our data suggest that the conformation of the N-domain in relation to the D1-D2 hexamer is directly linked to ATP hydrolysis and that the C-terminal region is required for hexamer stability. This leads us to propose a model where the N-domain adopts either of two conformations: a flexible conformation compatible with ATP hydrolysis or a coplanar conformation that is inactive.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Proteínas de Ciclo Celular/química , Modelos Moleculares , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Sustitución de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Demencia Frontotemporal , Humanos , Hidrólisis , Mutagénesis , Mutación Missense , Osteítis Deformante/genética , Osteítis Deformante/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Proteína que Contiene Valosina
6.
Biochem Soc Trans ; 36(Pt 1): 62-7, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18208387

RESUMEN

The AAA (ATPase associated with various cellular activities) p97 [also known as VCP (valosin-containing protein)] participates in numerous biological activities and is an essential component of the ubiquitin signalling pathway. A plethora of adaptors have been reported for p97, and increasing evidence is suggesting that it is through adaptor binding that p97 is diverted into different cellular pathways. Studying the interaction between p97 and its adaptors is therefore crucial to our understanding of the physiological roles of the protein. The interactions between p97 and the PUB [PNGase (peptide N-glycosidase)/ubiquitin-associated] domain of PNGase, the UBX (ubiquitin regulatory X) domain of p47, and the UBD (ubiquitin D) domain of Npl4 have been structurally characterized. UBX and UBD are structural homologues that share similar p97-binding modes; it is plausible that other proteins that contain a UBX/UBX-like domain also interact with p97 via similar mechanisms. In addition, several short p97-interacting motifs, such as VBM (VCP-binding motif), VIM (VCP-interacting motif) and SHP, have been identified recently and are also shared between p97 adaptors, hinting that proteins possessing the same p97-binding motif might also share common p97-binding mechanisms. In this review, we aim to summarize our current knowledge on adaptor binding to p97.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Metaloendopeptidasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/química , Humanos , Metaloendopeptidasas/química , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteína que Contiene Valosina
7.
Mol Cell ; 22(5): 575-85, 2006 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-16762831

RESUMEN

An ATP-dependent protease, FtsH, digests misassembled membrane proteins in order to maintain membrane integrity and digests short-lived soluble proteins in order to control their cellular regulation. This enzyme has an N-terminal transmembrane segment and a C-terminal cytosolic region consisting of an AAA+ ATPase domain and a protease domain. Here we present two crystal structures: the protease domain and the whole cytosolic region. The cytosolic region fully retains an ATP-dependent protease activity and adopts a three-fold-symmetric hexameric structure. The protease domains displayed a six-fold symmetry, while the AAA+ domains, each containing ADP, alternate two orientations relative to the protease domain, making "open" and "closed" interdomain contacts. Apparently, ATPase is active only in the closed form, and protease operates in the open form. The protease catalytic sites are accessible only through a tunnel following from the AAA+ domain of the adjacent subunit, raising a possibility of translocation of polypeptide substrate to the protease sites through this tunnel.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas de la Membrana/química , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Dimerización , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Thermus thermophilus/química , Thermus thermophilus/enzimología
8.
J Mol Biol ; 357(2): 481-92, 2006 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-16430918

RESUMEN

Bacterial enhancer-binding proteins (EBP) activate transcription by hydrolyzing ATP to restructure the sigma(54)-RNA polymerase-promoter complex. We compare six high resolution structures (<2.1 A) of the AAA(+) domain of EBP phage shock protein F (PspF) including apo, AMPPNP, Mg(2+)-ATP, and ADP forms. These structures permit a description of the atomic details underpinning the origins of the conformational changes occurring during ATP hydrolysis. Conserved regions of PspF's AAA(+) domain respond distinctively to nucleotide binding and hydrolysis, suggesting functional roles during the hydrolysis cycle, which completely agree with those derived from activities of PspF mutated at these positions. We propose a putative atomic switch that is responsible for coupling structural changes in the nucleotide-binding site to the repositioning of the sigma(54)-interacting loops. Striking similarities in nucleotide-specific conformational changes and atomic switch exist between PspF and the large T antigen helicase, suggesting conservation in the origin of those events amongst AAA(+) proteins.


Asunto(s)
Proteínas de Escherichia coli/química , Nucleótidos/metabolismo , Conformación Proteica , Transactivadores/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Magnesio/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , ARN Polimerasa Sigma 54/química , ARN Polimerasa Sigma 54/metabolismo , Transducción de Señal , Transactivadores/genética
9.
Science ; 307(5717): 1972-5, 2005 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15790859

RESUMEN

Activators of bacterial sigma54-RNA polymerase holoenzyme are mechanochemical proteins that use adenosine triphosphate (ATP) hydrolysis to activate transcription. We have determined by cryogenic electron microscopy (cryo-EM) a 20 angstrom resolution structure of an activator, phage shock protein F [PspF(1-275)], which is bound to an ATP transition state analog in complex with its basal factor, sigma54. By fitting the crystal structure of PspF(1-275) at 1.75 angstroms into the EM map, we identified two loops involved in binding sigma54. Comparing enhancer-binding structures in different nucleotide states and mutational analysis led us to propose nucleotide-dependent conformational changes that free the loops for association with sigma54.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Conformación Proteica , Transactivadores/química , Transactivadores/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas PII Reguladoras del Nitrógeno , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Polimerasa Sigma 54 , Factor sigma/química , Factor sigma/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
10.
Curr Protein Pept Sci ; 5(2): 89-105, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15078220

RESUMEN

ATPases are important molecular machines that convert the chemical energies stored in ATP to mechanical actions within the cell. ATPases are among the most abundant proteins with diverse functions involved in almost every cellular pathway. The well characterised ATPases include the various motor proteins responsible for cargo transfers, cell motilities, and muscle contractions; the protein degradation machinery - the proteasome; the ATP synthase, F-ATPase; and the chaperone systems. Other ATPases include DNA helicases and DNA replication complex; proteins responsible for protein/complex disassembly; and certain gene regulators. It is beyond the scope of this review to cover the complete range of ATPases. Instead, we will focus on a few representative ATPases, chosen based on their diverse mechanisms and properties. Furthermore, this review is by no means trying to cover comprehensively the literature for each ATPase nor the historical aspects in each field. We will focus on describing the various techniques being employed to derive the mechanisms and properties of the chosen ATPases. Among them, high and low resolution structural studies combined with biochemical assays seem to be the dominant technical advances adapted to reveal mechanisms for most of the ATPases except the bacterial sigma54 activators, whose mechanism of action is mostly derived from large amount of biochemical studies. A number of them, especially the F-ATPase and motor proteins, have been studied successfully by various single molecule and imaging techniques. We will therefore discuss them in greater details in order to describe the wide range techniques being utilised.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/fisiología , Proteínas de Escherichia coli , Humanos , Cinesinas/química , Cinesinas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformación Proteica , Pliegue de Proteína , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , ARN Polimerasa Sigma 54 , Factor sigma/química , Factor sigma/metabolismo , Factor sigma/fisiología
11.
Structure ; 10(10): 1415-23, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12377127

RESUMEN

FtsH is a cytoplasmic membrane-integrated, ATP-dependent metalloprotease, which processively degrades both cytoplasmic and membrane proteins in concert with unfolding. The FtsH protein is divided into the N-terminal transmembrane region and the larger C-terminal cytoplasmic region, which consists of an ATPase domain and a protease domain. We have determined the crystal structures of the Thermus thermophilus FtsH ATPase domain in the nucleotide-free and AMP-PNP- and ADP-bound states, in addition to the domain with the extra preceding segment. Combined with the mapping of the putative substrate binding region, these structures suggest that FtsH internally forms a hexameric ring structure, in which ATP binding could cause a conformational change to facilitate transport of substrates into the protease domain through the central pore.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Proteínas de la Membrana/química , Thermus thermophilus/enzimología , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Cartilla de ADN , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Nucleótidos/metabolismo , Conformación Proteica , Homología de Secuencia de Aminoácido
12.
Biochem Biophys Res Commun ; 296(1): 8-12, 2002 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-12147219

RESUMEN

The function of an ATP-dependent membrane protease FtsH was investigated using the enzyme from Thermus thermophilus HB8. An FtsH mutant with replacement of Glu-419 in the zinc-binding motif by Cys lost the activity to digest casein, a model unfolded protein, and the small ATPase activity of this mutant was no longer stimulated by casein. In the presence of ATP or ATPgammaS, but not ADP, a mutant FtsH-unfolded protein complex was isolated, indicating that ATP binding, but not ATP hydrolysis, is required for FtsH to form a stable complex with an unfolded protein. The FtsH without mutation at Glu-419 did not produce a stable complex with casein in the presence of any nucleotides tested and therefore it appears that blocking proteolysis also contributes to stabilization of the complex.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Secuencia de Bases , Cisteína/química , Cisteína/metabolismo , Cartilla de ADN , Estabilidad de Enzimas , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Unión Proteica , Thermus thermophilus/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...