Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
MicroPubl Biol ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-35005481

RESUMEN

We mapped rol-9 to the mlt-11 locus (encoded by the gene W01F3.3) on the far-right end of chromosome V. The canonical allele of rol-9, sc148, is an in-frame deletion in a conserved exon of the protein that creates a gain-of-function roller phenotype. sc148 deletes a short peptide of unknown function conserved in nematodes.

2.
Fam Cancer ; 21(1): 7-19, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33469799

RESUMEN

A substantial proportion of pathogenic variants associated with an increased risk of hereditary cancer are sequence variants affecting RNA splicing. The classification of these variants can be complex when both non-functional and functional transcripts are produced from the variant allele. We present four BRCA2 splice site variants with complex variant interpretations (BRCA2 c.68-3T>G, c.68-2A>G, c.425G>T, c.8331+2T>C). Evidence supporting a pathogenic classification is available for each variant, including in silico models, absence in population databases, and published functional data. However, comprehensive RNA analysis showed that some functional transcript may be produced by each variant. BRCA2 c.68-3T>G results in a partial splice defect. For BRCA2 c.68-2A>G and c.425G>T, aberrant splicing was shown to produce a potentially functional, in-frame transcript. BRCA2 c.8331+2T>C may utilize a functional GC donor in place of the wild-type GT donor. The severity of cancer history for carriers of these variants was also assessed using a history weighting algorithm and was not consistent with pathogenic controls (carriers of known pathogenic variants in BRCA2). Due to the conflicting evidence, our laboratory classifies these BRCA2 variants as variants of uncertain significance. This highlights the importance of evaluating new and existing evidence to ensure accurate variant classification and appropriate patient care.


Asunto(s)
Proteína BRCA2 , Neoplasias de la Mama , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Femenino , Genes BRCA2 , Humanos , Mutación , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , ARN Mensajero/genética
4.
JCO Precis Oncol ; 4: 1224-1225, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35050779
6.
Nat Commun ; 7: 10388, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26790951

RESUMEN

The molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7 5-HT receptor. Furthermore, we identify the rhgf-1 and rga-5 genes, encoding homologues of RhoGEF and RhoGAP, respectively, as regulators of axon regeneration. We demonstrate that one pathway initiated by SER-7 acts upstream of the C. elegans RhoA homolog RHO-1 in neuron regeneration, which functions via G12α and RHGF-1. In this pathway, RHO-1 inhibits diacylglycerol kinase, resulting in an increase in diacylglycerol. SER-7 also promotes axon regeneration by activating the cyclic AMP (cAMP) signalling pathway. Thus, HIF-1-mediated activation of 5-HT signalling promotes axon regeneration by activating both the RhoA and cAMP pathways.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regeneración Nerviosa , Enfermedades Neurodegenerativas/metabolismo , Serotonina/metabolismo , Factores de Transcripción/metabolismo , Animales , Axotomía , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/metabolismo , Transducción de Señal , Factores de Transcripción/genética
7.
J Neurosci ; 34(2): 629-45, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24403161

RESUMEN

Axons of the mammalian CNS lose the ability to regenerate soon after development due to both an inhibitory CNS environment and the loss of cell-intrinsic factors necessary for regeneration. The complex molecular events required for robust regeneration of mature neurons are not fully understood, particularly in vivo. To identify genes affecting axon regeneration in Caenorhabditis elegans, we performed both an RNAi-based screen for defective motor axon regeneration in unc-70/ß-spectrin mutants and a candidate gene screen. From these screens, we identified at least 50 conserved genes with growth-promoting or growth-inhibiting functions. Through our analysis of mutants, we shed new light on certain aspects of regeneration, including the role of ß-spectrin and membrane dynamics, the antagonistic activity of MAP kinase signaling pathways, and the role of stress in promoting axon regeneration. Many gene candidates had not previously been associated with axon regeneration and implicate new pathways of interest for therapeutic intervention.


Asunto(s)
Axones/fisiología , Caenorhabditis elegans/genética , Regeneración Nerviosa/genética , Transducción de Señal/fisiología , Animales , ARN Interferente Pequeño
8.
Genes Dev ; 27(10): 1159-78, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23666922

RESUMEN

Sex is determined in Caenorhabditis elegans by the ratio of X chromosomes to the sets of autosomes, the X:A signal. A set of genes called X signal elements (XSEs) communicates X-chromosome dose by repressing the masculinizing sex determination switch gene xol-1 (XO lethal) in a dose-dependent manner. xol-1 is active in 1X:2A embryos (males) but repressed in 2X:2A embryos (hermaphrodites). Here we showed that the autosome dose is communicated by a set of autosomal signal elements (ASEs) that act in a cumulative, dose-dependent manner to counter XSEs by stimulating xol-1 transcription. We identified new ASEs and explored the biochemical basis by which ASEs antagonize XSEs to determine sex. Multiple antagonistic molecular interactions carried out on a single promoter explain how different X:A values elicit different sexual fates. XSEs (nuclear receptors and homeodomain proteins) and ASEs (T-box and zinc finger proteins) bind directly to several sites on xol-1 to counteract each other's activities and thereby regulate xol-1 transcription. Disrupting ASE- and XSE-binding sites in vivo recapitulated the misregulation of xol-1 transcription caused by disrupting cognate signal element genes. XSE- and ASE-binding sites are distinct and nonoverlapping, suggesting that direct competition for xol-1 binding is not how XSEs counter ASEs. Instead, XSEs likely antagonize ASEs by recruiting cofactors with reciprocal activities that induce opposite transcriptional states. Most ASE- and XSE-binding sites overlap xol-1's -1 nucleosome, which carries activating chromatin marks only when xol-1 is turned on. Coactivators and corepressors tethered by proteins similar to ASEs and XSEs are known to deposit and remove such marks. The concept of a sex signal comprising competing XSEs and ASEs arose as a theory for fruit flies a century ago. Ironically, while the recent work of others showed that the fly sex signal does not fit this simple paradigm, our work shows that the worm signal does.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Cromosomas/genética , Procesos de Determinación del Sexo/genética , Cromosoma X/genética , Secuencias de Aminoácidos , Animales , Asparagina , Sitios de Unión , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Compensación de Dosificación (Genética) , Embrión no Mamífero/metabolismo , Femenino , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica/genética , Genes de Helminto/genética , Glutamina , Proteínas de Homeodominio/genética , Masculino , Regiones Promotoras Genéticas/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Transcripción Genética , Transposasas/genética , Transposasas/metabolismo
10.
Nat Commun ; 3: 1136, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23072806

RESUMEN

The ability of neurons to regenerate their axons after injury is determined by a balance between cellular pathways that promote and those that inhibit regeneration. In Caenorhabditis elegans, axon regeneration is positively regulated by the c-Jun N-terminal kinase mitogen activated protein kinase pathway, which is activated by growth factor-receptor tyrosine kinase signalling. Here we show that fatty acid amide hydrolase-1, an enzyme involved in the degradation of the endocannabinoid anandamide (arachidonoyl ethanolamide), regulates the axon regeneration response of γ-aminobutyric acid neurons after laser axotomy. Exogenous arachidonoyl ethanolamide inhibits axon regeneration via the Goα subunit GOA-1, which antagonizes the Gqα subunit EGL-30. We further demonstrate that protein kinase C functions downstream of Gqα and activates the MLK-1-MEK-1-KGB-1 c-Jun N-terminal kinase pathway by phosphorylating MLK-1. Our results show that arachidonoyl ethanolamide induction of a G protein signal transduction pathway has a role in the inhibition of post-development axon regeneration.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Endocannabinoides/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Sistema de Señalización de MAP Quinasas , Regeneración Nerviosa/fisiología , Proteínas Tirosina Quinasas/metabolismo , Amidohidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Ácidos Araquidónicos/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Genes de Helminto/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas Quinasa Quinasa PAM/química , Quinasas Quinasa Quinasa PAM/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Alcamidas Poliinsaturadas/metabolismo
11.
Neuron ; 74(6): 961-3, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22726825

RESUMEN

In this issue of Neuron, Shin et al. (2012) show that the dual leucine zipper kinase (DLK) is responsible for the retrograde injury signal in spinal sensory and motor neurons. DLK is required for the accelerated regeneration seen after axotomy and for the improved regeneration seen after a conditioning injury. DLK KO axons have severely reduced axon regeneration in vivo.


Asunto(s)
Transporte Axonal/fisiología , Axones/fisiología , Quinasas Quinasa Quinasa PAM/metabolismo , Neuronas Motoras/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Transducción de Señal/fisiología , Animales
12.
Nat Neurosci ; 15(4): 551-7, 2012 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-22388962

RESUMEN

The ability of neurons to undergo regenerative growth after injury is governed by cell-intrinsic and cell-extrinsic regeneration pathways. These pathways represent potential targets for therapies to enhance regeneration. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, the Jun N-terminal kinase (JNK) and p38 MAP kinase (MAPK) pathways are important for axon regeneration. We found that the C. elegans SVH-1 growth factor and its receptor, SVH-2 tyrosine kinase, regulate axon regeneration. Loss of SVH-1-SVH-2 signaling resulted in a substantial defect in the ability of neurons to regenerate, whereas its activation improved regeneration. Furthermore, SVH-1-SVH-2 signaling was initiated extrinsically by a pair of sensory neurons and functioned upstream of the JNK-MAPK pathway. Thus, SVH-1-SVH-2 signaling via activation of the MAPK pathway acts to coordinate neuron regeneration response after axon injury.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Regeneración Nerviosa/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Axones/enzimología , Caenorhabditis elegans , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Datos de Secuencia Molecular
13.
J Vis Exp ; (57)2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22126922

RESUMEN

Laser axotomy followed by time-lapse microscopy is a sensitive assay for axon regeneration phenotypes in C. elegans(1). The main difficulty of this assay is the perceived cost ($25-100K) and technical expertise required for implementing a laser ablation system(2,3). However, solid-state pulse lasers of modest costs (<$10K) can provide robust performance for laser ablation in transparent preparations where target axons are "close" to the tissue surface. Construction and alignment of a system can be accomplished in a day. The optical path provided by light from the focused condenser to the ablation laser provides a convenient alignment guide. An intermediate module with all optics removed can be dedicated to the ablation laser and assures that no optical elements need be moved during a laser ablation session. A dichroic in the intermediate module allows simultaneous imaging and laser ablation. Centering the laser beam to the outgoing beam from the focused microscope condenser lens guides the initial alignment of the system. A variety of lenses are used to condition and expand the laser beam to fill the back aperture of the chosen objective lens. Final alignment and testing is performed with a front surface mirrored glass slide target. Laser power is adjusted to give a minimum size ablation spot (<1 um). The ablation spot is centered with fine adjustments of the last kinematically mounted mirror to cross hairs fixed in the imaging window. Laser power for axotomy will be approximately 10X higher than needed for the minimum ablation spot on the target slide (this may vary with the target you use). Worms can be immobilized for laser axotomy and time-lapse imaging by mounting on agarose pads (or in microfluidic chambers(4)). Agarose pads are easily made with 10% agarose in balanced saline melted in a microwave. A drop of molten agarose is placed on a glass slide and flattened with another glass slide into a pad approximately 200 um thick (a single layer of time tape on adjacent slides is used as a spacer). A "Sharpie" cap is used to cut out a uniformed diameter circular pad of 13 mm. Anesthetic (1 ul Muscimol 20mM) and Microspheres (Chris Fang-Yen personal communication) (1 ul 2.65% Polystyrene 0.1 um in water) are added to the center of the pad followed by 3-5 worms oriented so they are lying on their left sides. A glass coverslip is applied and then Vaseline is used to seal the coverslip and prevent evaporation of the sample.


Asunto(s)
Axones/fisiología , Axotomía/instrumentación , Axotomía/métodos , Caenorhabditis elegans/fisiología , Terapia por Láser/instrumentación , Terapia por Láser/métodos , Regeneración Nerviosa/fisiología , Animales , Axotomía/economía , Femenino , Terapia por Láser/economía , Masculino
14.
Proc Natl Acad Sci U S A ; 108(26): 10738-43, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21670305

RESUMEN

Signaling pathways essential for axon regeneration, but not for neuron development or function, are particularly well suited targets for therapeutic intervention. We find that the parallel PMK-3(p38) and KGB-1(JNK) MAPK pathways must be coordinately activated to promote axon regeneration. Axon regeneration fails if the activity of either pathway is absent. These two MAPKs are coregulated by the E3 ubiquitin ligase RPM-1(Phr1) via targeted degradation of the MAPKKKs DLK-1 and MLK-1 and by the MAPK phosphatase VHP-1(MKP7), which negatively regulates both PMK-3(p38) and KGB-1(JNK).


Asunto(s)
Axones , MAP Quinasa Quinasa 4/metabolismo , Regeneración Nerviosa , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN , Activación Enzimática , Transducción de Señal
15.
Nat Methods ; 7(6): 451-3, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20418868

RESUMEN

We developed a method, MosDEL, to generate targeted knockouts of genes in Caenorhabditis elegans by injection. We generated a double-strand break by mobilizing a Mos1 transposon adjacent to the region to be deleted; the double-stranded break is repaired using injected DNA as a template. Repair can delete up to 25 kb of DNA and simultaneously insert a positive selection marker.


Asunto(s)
Caenorhabditis elegans/genética , Elementos Transponibles de ADN/genética , Eliminación de Gen , Animales , Hibridación Genómica Comparativa , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Transposasas/fisiología
16.
Science ; 323(5915): 802-6, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19164707

RESUMEN

Regeneration of injured neurons can restore function, but most neurons regenerate poorly or not at all. The failure to regenerate in some cases is due to a lack of activation of cell-intrinsic regeneration pathways. These pathways might be targeted for the development of therapies that can restore neuron function after injury or disease. Here, we show that the DLK-1 mitogen-activated protein (MAP) kinase pathway is essential for regeneration in Caenorhabditis elegans motor neurons. Loss of this pathway eliminates regeneration, whereas activating it improves regeneration. Further, these proteins also regulate the later step of growth cone migration. We conclude that after axon injury, activation of this MAP kinase cascade is required to switch the mature neuron from an aplastic state to a state capable of growth.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Neuronas Motoras/fisiología , Envejecimiento , Animales , Axones/ultraestructura , Axotomía , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Conos de Crecimiento/fisiología , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Mutación , Regeneración Nerviosa/fisiología , Interferencia de ARN , Ácido gamma-Aminobutírico/metabolismo
17.
Cell ; 132(1): 149-60, 2008 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-18191228

RESUMEN

Muscle contraction is normally mediated by the release of neurotransmitters from motor neurons. Here we demonstrate that protons can act as a direct transmitter from intestinal cells to stimulate muscle contraction. During the C. elegans defecation motor program the posterior body muscles contract even in the absence of neuronal inputs or vesicular neurotransmission. In this study, we demonstrate that the space between the intestine and the muscle is acidified just prior to muscle contraction and that the release of caged protons is sufficient to induce muscle contraction. PBO-4 is a putative Na+/H+ ion exchanger expressed on the basolateral membrane of the intestine, juxtaposed to the posterior body muscles. In pbo-4 mutants the extracellular space is not acidified and the muscles fail to contract. The pbo-5 and pbo-6 genes encode subunits of a "cys-loop" proton-gated cation channel required for muscles to respond to acidification. In heterologous expression assays the PBO receptor is half-maximally activated at a pH of 6.8. The identification of the mechanisms for release and reception of proton signals establishes a highly unusual mechanism for intercellular communication.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mucosa Intestinal/metabolismo , Contracción Muscular/fisiología , Protones , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/aislamiento & purificación , Comunicación Celular/fisiología , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Defecación/fisiología , Intestinos/citología , Activación del Canal Iónico/fisiología , Canales Iónicos/química , Canales Iónicos/metabolismo , Músculos/metabolismo , Músculos/ultraestructura , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transducción de Señal/fisiología , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/aislamiento & purificación
18.
Genes Dev ; 22(2): 194-211, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18198337

RESUMEN

Biological processes that function chromosome-wide are not well understood. Here, we show that the Caenorhabditis elegans protein DPY-28 controls two such processes, X-chromosome dosage compensation in somatic cells and meiotic crossover number and distribution in germ cells. DPY-28 resembles a subunit of condensin, a conserved complex required for chromosome compaction and segregation. In the soma, DPY-28 associates with the dosage compensation complex on hermaphrodite X chromosomes to repress transcript levels. In the germline, DPY-28 restricts crossovers. In many organisms, one crossover decreases the likelihood of another crossover nearby, an enigmatic process called crossover interference. In C. elegans, interference is complete: Only one crossover occurs per homolog pair. dpy-28 mutations increase crossovers, disrupt crossover interference, and alter crossover distribution. Early recombination intermediates (RAD-51 foci) increase concomitantly, suggesting that DPY-28 acts to limit double-strand breaks (DSBs). Reinforcing this view, dpy-28 mutations partially restore DSBs in mutants lacking HIM-17, a chromatin-associated protein required for DSB formation. Our work further links dosage compensation to condensin and establishes a new role for condensin components in regulating crossover number and distribution. We propose that both processes utilize a related mechanism involving changes in higher-order chromosome structure to achieve chromosome-wide effects.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Caenorhabditis elegans/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Compensación de Dosificación (Genética) , Meiosis , Complejos Multiproteicos/química , Cromosoma X , Adenosina Trifosfatasas/genética , Animales , Caenorhabditis elegans , Proteínas de Ciclo Celular/fisiología , Rotura Cromosómica , Intercambio Genético , Proteínas de Unión al ADN/genética , Trastornos del Desarrollo Sexual , Epigénesis Genética , Complejos Multiproteicos/genética , Mutación
19.
Nature ; 443(7107): 101-5, 2006 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16943775

RESUMEN

Male infertility is a long-standing enigma of significant medical concern. The integrity of sperm chromatin is a clinical indicator of male fertility and in vitro fertilization potential: chromosome aneuploidy and DNA decondensation or damage are correlated with reproductive failure. Identifying conserved proteins important for sperm chromatin structure and packaging can reveal universal causes of infertility. Here we combine proteomics, cytology and functional analysis in Caenorhabditis elegans to identify spermatogenic chromatin-associated proteins that are important for fertility. Our strategy employed multiple steps: purification of chromatin from comparable meiotic cell types, namely those undergoing spermatogenesis or oogenesis; proteomic analysis by multidimensional protein identification technology (MudPIT) of factors that co-purify with chromatin; prioritization of sperm proteins based on abundance; and subtraction of common proteins to eliminate general chromatin and meiotic factors. Our approach reduced 1,099 proteins co-purified with spermatogenic chromatin, currently the most extensive catalogue, to 132 proteins for functional analysis. Reduction of gene function through RNA interference coupled with protein localization studies revealed conserved spermatogenesis-specific proteins vital for DNA compaction, chromosome segregation, and fertility. Unexpected roles in spermatogenesis were also detected for factors involved in other processes. Our strategy to find fertility factors conserved from C. elegans to mammals achieved its goal: of mouse gene knockouts corresponding to nematode proteins, 37% (7/19) cause male sterility. Our list therefore provides significant opportunity to identify causes of male infertility and targets for male contraceptives.


Asunto(s)
Caenorhabditis elegans/fisiología , Cromatina/metabolismo , Secuencia Conservada , Evolución Molecular , Fertilidad/fisiología , Proteómica , Espermatozoides/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Fertilidad/genética , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Noqueados , Interferencia de ARN , Espermatogénesis/genética , Espermatogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...