RESUMEN
In this paper the synthesis, characterization and photoluminescent behavior of the [RE(DBM)3L2] complexes (RE=Gd and Eu) with a variety of sulfoxide ligands; L=benzyl sulfoxide (DBSO), methyl sulfoxide (DMSO), phenyl sulfoxide (DPSO) and p-tolyl sulfoxide (PTSO) have been investigated in solid state. The emission spectra of the Eu(3+)-beta-diketonate complexes show characteristics narrow bands arising from the 5D0-->7F(J) (J=0-4) transitions, which are split according to the selection rule for C(n), C(nv) or C(s) site symmetries. The experimental Judd-Ofelt intensity parameters (Omega2 and Omega4), radiative (A(rad)) and non-radiative (A(nrad)) decay rates, and R02 for the europium complexes have been determined and compared. The highest value of Omega2 (61.9x10(-20)cm2) was obtained to the complex with PTSO ligand, indicating that Eu3+ ion is in the highly polarizable chemical environment. The higher values of the experimental quantum yield (q) and emission quantum efficiency of the emitter 5D0 level (eta) for the Eu-complexes with DMSO, DBSO and PTSO sulfoxides suggest that these complexes are promising Light Conversion Molecular Devices (LCMDs). The lower value of quantum yield (q=1%), for the hydrated complex [Eu(DBM)3H2O], indicates that the luminescence quenching occurs via multiphonon relaxation by coupling with the OH-oscillators from water molecule coordinated to rare earth ion. The pure red emission of the Eu-complexes has been confirmed by (x, y) color coordinates.