Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163666

RESUMEN

Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.


Asunto(s)
Trastornos de la Motilidad Ciliar/genética , Modelos Animales de Enfermedad , Animales , Organismos Acuáticos/fisiología , Técnicas de Cultivo de Célula , Humanos , Mamíferos/fisiología
2.
Cells ; 9(2)2020 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-31991798

RESUMEN

Katanin-like 2 protein (Katnal2) orthologs have a tripartite domain organization. Two highly conserved regions, an N-terminal LisH (Lis-homology) domain and a C-terminal AAA catalytic domain, are separated by a less conserved linker. The AAA domain of Katnal2 shares the highest amino acid sequence homology with the AAA domain of the canonical katanin p60. Katnal2 orthologs are present in a wide range of eukaryotes, from protists to humans. In the ciliate Tetrahymena thermophila, a Katnal2 ortholog, Kat2, co-localizes with the microtubular structures, including basal bodies and ciliary outer doublets, and this co-localization is sensitive to levels of microtubule glutamylation. The functional analysis of Kat2 domains suggests that an N-terminal fragment containing a LisH domain plays a role in the subcellular localization, dimerization, and stability of Kat2.


Asunto(s)
Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Tetrahymena/metabolismo , Ácido Glutámico/metabolismo , Microscopía Electrónica de Transmisión , Microtúbulos/ultraestructura , Mutación , Dominios Proteicos , Multimerización de Proteína/genética , Estabilidad Proteica , Tetrahymena/enzimología , Tetrahymena/genética , Tetrahymena/ultraestructura
4.
J Appl Genet ; 56(3): 287-98, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25666974

RESUMEN

Benzoxazinoids (BX) are major secondary metabolites of gramineous plants that play an important role in disease resistance and allelopathy. They also have many other unique properties including anti-bacterial and anti-fungal activity, and the ability to reduce alfa-amylase activity. The biosynthesis and modification of BX are controlled by the genes Bx1 ÷ Bx10, GT and glu, and the majority of these Bx genes have been mapped in maize, wheat and rye. However, the genetic basis of BX biosynthesis remains largely uncharacterized apart from some data from maize and wheat. The aim of this study was to isolate, sequence and characterize five genes (ScBx1, ScBx2, ScBx3, ScBx4 and ScBx5) encoding enzymes involved in the synthesis of DIBOA, an important defense compound of rye. Using a modified 3D procedure of BAC library screening, seven BAC clones containing all of the ScBx genes were isolated and sequenced. Bioinformatic analyses of the resulting contigs were used to examine the structure and other features of these genes, including their promoters, introns and 3'UTRs. Comparative analysis showed that the ScBx genes are similar to those of other Poaceae species, especially to the TaBx genes. The polymorphisms present both in the coding sequences and non-coding regions of ScBx in relation to other Bx genes are predicted to have an impact on the expression, structure and properties of the encoded proteins.


Asunto(s)
Genes de Plantas , Ácidos Hidroxámicos/química , Secale/genética , Vías Biosintéticas/genética , Biología Computacional , ADN de Plantas/genética , Exones , Biblioteca de Genes , Intrones , Regiones Promotoras Genéticas , Secale/química , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA