Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 623(7988): 820-827, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938771

RESUMEN

The majority of oncogenic drivers are intracellular proteins, constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient for generating responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins essential for tumorigenesis. We focused on targeting the unmutated peptide QYNPIRTTF discovered on HLA-A*24:02, which is derived from the neuroblastoma-dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (PC-CARs) through a counter panning strategy using predicted potentially cross-reactive peptides. We further proposed that PC-CARs can recognize peptides on additional HLA allotypes when presenting a similar overall molecular surface. Informed by our computational modelling results, we show that PHOX2B PC-CARs also recognize QYNPIRTTF presented by HLA-A*23:01, the most common non-A2 allele in people with African ancestry. Finally, we demonstrate potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that PC-CARs have the potential to expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and allow targeting through additional HLA allotypes in a clinical setting.


Asunto(s)
Antígenos de Neoplasias , Neuroblastoma , Proteínas Oncogénicas , Péptidos , Receptores Quiméricos de Antígenos , Animales , Humanos , Ratones , África/etnología , Alelos , Secuencia de Aminoácidos , Carcinogénesis , Reacciones Cruzadas , Antígenos HLA-A/química , Antígenos HLA-A/inmunología , Neuroblastoma/genética , Neuroblastoma/inmunología , Neuroblastoma/terapia , Proteínas Oncogénicas/antagonistas & inhibidores , Proteínas Oncogénicas/inmunología , Péptidos/antagonistas & inhibidores , Péptidos/química , Péptidos/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/uso terapéutico
3.
Am J Otolaryngol ; 44(2): 103703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36495647

RESUMEN

The nasolabial flap (NLF) has been reported extensively for reconstruction of various intraoral and extraoral defects resulting from trauma or ablative surgery. However, it has not been described for post-radiation lip augmentation. Herein, we present the case of a 74-year-old female who previously underwent a subtotal glossectomy and free flap reconstruction followed by radiotherapy. While oncologically the patient did well, she developed a significant lower lip contracture which compromised oral intake, denture placement, lip excursion, and psychosocial well-being. The patient underwent release of the scar contracture and a NLF was utilized intraorally to act as a spacer between the gingiva and inner lip mucosa to augment the soft tissue deficit. The patient went on to regain oral intake and placement of her dentures, while reporting significant satisfaction with the post-procedural benefits.


Asunto(s)
Labio , Procedimientos de Cirugía Plástica , Humanos , Femenino , Anciano , Labio/cirugía , Colgajos Quirúrgicos , Mucosa Bucal , Cicatriz/etiología , Cicatriz/cirugía
4.
Nature ; 599(7885): 477-484, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34732890

RESUMEN

The majority of oncogenic drivers are intracellular proteins, thus constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient to generate responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins that are essential for tumourigenesis and focus on targeting the unmutated peptide QYNPIRTTF, discovered on HLA-A*24:02, which is derived from the neuroblastoma dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (CARs) using a counter-panning strategy with predicted potentially cross-reactive peptides. We further hypothesized that peptide-centric CARs could recognize peptides on additional HLA allotypes when presented in a similar manner. Informed by computational modelling, we showed that PHOX2B peptide-centric CARs also recognize QYNPIRTTF presented by HLA-A*23:01 and the highly divergent HLA-B*14:02. Finally, we demonstrated potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that peptide-centric CARs have the potential to vastly expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and widen the population of patients who would benefit from such therapy by breaking conventional HLA restriction.


Asunto(s)
Antígenos de Neoplasias/inmunología , Antígenos HLA/inmunología , Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Proteínas Oncogénicas/inmunología , Receptores Quiméricos de Antígenos/inmunología , Animales , Antígenos de Neoplasias/metabolismo , Línea Celular , Línea Celular Tumoral , Reacciones Cruzadas , Reactividad Cruzada , Femenino , Antígenos HLA/metabolismo , Proteínas de Homeodominio/inmunología , Proteínas de Homeodominio/metabolismo , Humanos , Interferón gamma/inmunología , Ratones , Neoplasias/metabolismo , Proteínas Oncogénicas/antagonistas & inhibidores , Proteínas Oncogénicas/metabolismo , Linfocitos T/inmunología , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo
5.
ACS Appl Nano Mater ; 4(3): 3122-3139, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-34027313

RESUMEN

BACKGROUND: fluorescent nanodiamonds (FND) are nontoxic, infinitely photostable nanoparticles that emit near-infrared fluorescence and have a modifiable surface allowing for the generation of protein-FND conjugates. FND-mediated immune cell targeting may serve as a strategy to visualize immune cells and promote immune cell activation. METHODS: uncoated-FND (uFND) were fabricated, coated with glycidol (gFND), and conjugated with immunoglobulin G (IgG-gFND). In vitro studies were performed using a breast cancer/natural killer/monocyte co-culture system, and in vivo studies were performed using a breast cancer mouse model. RESULTS: in vitro studies demonstrated the targeted immune cell uptake of IgG-gFND, resulting in significant immune cell activation and no compromise in immune cell viability. IgG-gFND remained at the tumor site following intratumoral injection compared to uFND which migrated to the liver and kidneys. CONCLUSION: antibody-conjugated FND may serve as immune drug delivery vehicles with "track and trace capabilities" to promote directed antitumor activity and minimize systemic toxicities.

6.
Soc Sci Humanit Open ; 2(1): 100044, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34173489

RESUMEN

This commentary aims to deconstruct xenophobia and its worldwide impact, particularly on people of Asian descent, amid the global COVID-19 pandemic. The commentary begins with an overview of COVID-19's impact on the United States economy and educational landscape, continues with a discussion about the global history of pandemic-prompted xenophobia and its relationship to sensationalized media discourse, and concludes with recommendations to reconsider various aspects of intercultural communication in relation to public health issues.

7.
Clin Cancer Res ; 25(16): 4955-4965, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31142501

RESUMEN

PURPOSE: mAbs including cetuximab can induce antibody-dependent cellular cytotoxicity (ADCC) and cytokine production mediated via innate immune cells with the ability to recognize mAb-coated tumors. Preclinical modeling has shown that costimulation of natural killer (NK) cells via the Fc receptor and the IL12 receptor promotes NK-cell-mediated ADCC and production of cytokines. PATIENTS AND METHODS: This phase I/II trial evaluated the combination of cetuximab with IL12 for the treatment of EGFR-expressing head and neck cancer. Treatment consisted of cetuximab 500 mg/m2 i.v. every 2 weeks with either 0.2 mcg/kg or 0.3 mcg/kg IL12 s.c. on days 2 and 5 of the 2-week cycle, beginning with cycle 2. Correlative studies from blood draws obtained prior to treatment and during therapy included measurement of ADCC, serum cytokine, and chemokine analysis, determination of NK cell FcγRIIIa polymorphisms, and an analysis of myeloid-derived suppressor cell (MDSC) frequency in peripheral blood. RESULTS: The combination of cetuximab and IL12 was well tolerated. No clinical responses were observed, however, 48% of patients exhibited prolonged progression-free survival (PFS; average of 6.5 months). Compared with patients that did not exhibit clinical benefit, patients with PFS >100 days exhibited increased ADCC as therapy continued compared with baseline, greater production of IFNγ, IP-10, and TNFα at the beginning of cycle 8 compared with baseline values and had a predominance of monocytic MDSCs versus granulocytic MDSCs prior to therapy. CONCLUSIONS: Further investigation of IL12 as an immunomodulatory agent in combination with cetuximab in head and neck squamous cell carcinoma is warranted.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Biomarcadores de Tumor , Cetuximab/administración & dosificación , Citocinas/biosíntesis , Esquema de Medicación , Femenino , Humanos , Interleucina-12/administración & dosificación , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Metástasis de la Neoplasia , Estadificación de Neoplasias , Polimorfismo Genético , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Resultado del Tratamiento
8.
Oncoimmunology ; 7(2): e1381813, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29308301

RESUMEN

Natural killer (NK) cells serve a critical role in the immune response against microbes and developing tumors. We have demonstrated that NK cells produce stimulatory cytokines (e.g., IFN-γ) in response to potent stimulation via immobilized IgG (to engage Fc receptors) and interleukin (IL)-12. CD25 is a component of the high-affinity IL-2R, which promotes NK cell activation in response to low doses of IL-2 such as those released by activated T cells. We hypothesized that stimulation of NK cells via IgG and IL-12 would enhance CD25 expression and promote NK cell anti-tumor activity in response to low-dose IL-2. It was confirmed that this dual stimulation strategy significantly enhanced NK cell CD25 expression compared to unstimulated cells or cells treated with IgG or IL-12 alone. Dual stimulated NK cells also were more responsive to low-dose IL-2. Dual stimulated NK cells subsequently treated with low-dose IL-2 (10 pg/mL) displayed enhanced intracellular signaling as indicated by increased pSTAT5 levels. IFN-γ production and cytotoxicity against K562 cells by NK cells stimulated with low-dose IL-2 was comparable to that of cells treated with high-dose IL-2 (10 ng/mL). Importantly, cells isolated from head and neck cancer patients receiving the mAb cetuximab and IL-12 on a clinical trial displayed increased CD25 expression following combination therapy compared to baseline. Altogether, these findings suggest that FcR and IL-12R co-stimulation induces expression of the high-affinity IL-2R and promotes NK cell anti-tumor activity.

9.
Oncotarget ; 7(49): 81172-81186, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27783987

RESUMEN

The ubiquitin-proteasome signaling pathway is critical for cell cycle regulation and neoplastic growth. Proteasome inhibition can activate apoptotic pathways. Bortezomib, a selective proteasome inhibitor, has anti-melanoma activity. MLN2238 (ixazomib), an oral proteasome inhibitor, has improved pharmacotherapeutic parameters compared to bortezomib. Interferon-alpha (IFN-α), an immune boosting agent, is FDA-approved for treatment of melanoma. In this study in vitro and in vivo evaluation of the antitumor potential of ixazomib and combination treatments with ixazomib and IFN-α were performed. Apoptosis induced by ixazomib was first observed at 12 hours and was maximal at 48 hours with similar levels of cell death compared to bortezomib. IFN-α alone had little effect on cell viability in vitro. However, the combination of ixazomib with IFN-α significantly enhanced ixazomib's ability to induce apoptotic cell death in BRAF V600E mutant and BRAF wild-type human melanoma tumor cells. The combination of ixazomib and IFN-α also enhanced inhibition of cell proliferation in BRAF V600E mutant melanoma tumor cells; however, this was not seen in BRAF wild-type cells. Ixazomib-induced apoptosis was associated with processing of the pro-apoptotic proteins procaspase-3, -7, -8, and -9, and cleavage of poly-ADP-ribose polymerase (PARP). In an in vivo xenograft model of human melanoma, combination treatment with IFN-α-2b and ixazomib demonstrated a significant reduction in tumor volume when compared to vehicle (p = 0.005) and single therapy ixazomib (p = 0.017) and IFN-α-2b (p = 0.036). These pre-clinical results support further evaluation of combination treatment with ixazomib and IFN-α for the treatment of advanced BRAF V600E mutant melanoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Compuestos de Boro/farmacología , Glicina/análogos & derivados , Interferón-alfa/farmacología , Melanoma/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Glicina/farmacología , Humanos , Interferón alfa-2 , Melanoma/enzimología , Melanoma/genética , Melanoma/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Recombinantes/farmacología , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Factores de Tiempo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA