Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Anim Sci Technol ; 64(1): 143-154, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35174349

RESUMEN

This study was conducted to evaluate the relationship among market weight, slaughter age, yield grade, and primal cut yield in Hanwoo. A total of 403 Hanwoo (Korean native cattle) was assessed for carcass traits such as carcass cold weight, backfat thickness, ribeye area, dressing percentage, yield index, and marbling score. The production yield of the individual major primal cuts of Hanwoo beef was also measured. Carcass cold weight, ribeye area, and backfat thickness, which affect meat quality increased with increased market weight (p < 0.05). The production yield of the ten major primal cuts also increased with increased market weight (p < 0.05). In terms of slaughter age, carcass cold weight, ribeye area, and backfat thickness all increased from 25 months to 28-29 months, and the production yield of all prime cuts also increased with increasing slaughter age. According to the meat yield grade, carcass cold weight and backfat thickness increased from grade A to grade C, although the ribeye area was not affected. The combined findings of the study suggest that slaughtering Hanwoo at the weight of 651-700 kg and 701-750 and age of 28.23 and 29.83 months could be desirable to achieve the best quality and quantity grade of Hanwoo beef. However, the positive correlation of carcass cold weight and backfat thickness, and the negative correlation of the yield index according to primal cuts yield indicated that it is necessary to couple the slaughtering management of cattle with improved genetic and breeding method of Hanwoo to increase the production yield of the major prime cuts of Hanwoo beef.

2.
Food Sci Anim Resour ; 42(1): 18-33, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35028571

RESUMEN

Beef contains functional fatty acids such as conjugated linoleic acid and long-chain fatty acids. This review summarizes results from studies comparing the fatty acid composition of beef from cattle fed either grass or grain-based feed. Since functional lipid components are contributed through dietary consumption of beef, the fatty acid composition is reported on mg/100 g of meat basis rather than on a percentage of total fat basis. Beef from grass-fed contains lesser total fat than that from grain-fed in all breeds of cattle. Reduced total fat content also influences the fatty acid composition of beef. A 100 g beef meat from grass-fed cattle contained 2,773 mg less total saturated fatty acids (SFA) than that from the same amount of grain-fed. Grass-fed also showed a more favorable SFA lipid profile containing less cholesterol-raising fatty acids (C12:0 to C16:0) but contained a lesser amount of cholesterol-lowering C18:0 than grain-fed beef. In terms of essential fatty acids, grass-fed beef showed greater levels of trans-vaccenic acid and long-chain n-3 polyunsaturated fatty acids (PUFA; EPA, DPA, DHA) than grain-fed beef. Grass-fed beef also contains an increased level of total n-3 PUFA which reduced the n-6 to n-3 ratio thus can offer more health benefits than grain-fed. The findings signify that grass-fed beef could exert protective effects against a number of diseases ranging from cancer to cardiovascular disease (CVD) as evidenced by the increased functional omega-3 PUFA and decreased undesirable SFA. Although grain-fed beef showed lesser EPA, DPA, and DHA, consumers should be aware that greater portions of grain-fed beef could also achieve a similar dietary intake of long-chain omega-3 fatty acids. Noteworthy, grain-fed beef contained higher total monounsaturated fatty acid that have beneficial roles in the amelioration of CVD risks than grass-fed beef. In Hanwoo beef, grain-fed showed higher EPA and DHA than grass-fed beef.

3.
Anim Sci J ; 92(1): e13634, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34605115

RESUMEN

This study investigated the effects of dietary exogenous glucose oxidase (GOD) and/or catalase (CAT) on the intestinal antioxidant capacity and barrier function in piglets under oxidative stress. Sixty pigs assigned randomly to five treatment groups-CON: basal diet; DIQ: basal diet; GOD: basal diet + 40-U GOD/kg diet; CAT: basal diet + 50-U CAT/kg diet; and GC: basal diet + 40-U GOD/kg diet + 50-U CAT/kg diet-were analyzed. On Day 14, the CON group was injected with saline, and the others were treated with diquat. The results showed that in diquat-treated piglets, supplementation of dietary GOD and CAT elevated the superoxide dismutase and CAT activities and attenuated the malondialdehyde level in plasma and intestinal mucosa, enhanced the duodenal villus height and villus height/crypt depth ratio, upregulated ZO-1 mRNA level, and attenuated the apoptosis of the epithelial cells and caspase-3 mRNA level in the intestine. Additionally, the supplementation upregulated mRNA expression of the intestinal NF-E2-related factor 2-regulated genes in diquat-treated piglets. However, GOD combined with CAT could not alleviate oxidative damage better than supplementation of CAT or GOD alone under oxidative stress. Overall, the study provides a potential alternative that could relieve the weaning stress in piglets and help formulate antibiotic-free diets.


Asunto(s)
Diquat , Glucosa Oxidasa , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Diquat/metabolismo , Glucosa Oxidasa/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Estrés Oxidativo , ARN Mensajero/metabolismo , Porcinos , Destete
4.
J Anim Sci Technol ; 63(2): 380-393, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33987612

RESUMEN

This study aimed to determine the blood lipid profiles, fatty acid composition, and lipogenic enzyme activities in rat adipose tissues as affected by the Angus beef fat (ABF) and Hanwoo beef fat (HBF) containing high oleic acid (OA) content. We assigned 60 Sprague Dawley rats with a mean bodyweight of 249 ± 3.04 g to three groups (n = 20 each) to receive diets containing 7% coconut oil (CON), 7% ABF, or 7% HBF. The OA content was highest in the HBF (45.23%) followed by ABF (39.51%) and CON (6.10%). The final body weight of the HBF-fed group was significantly increased, probably due to increased feed intake, indicating the palatability of the diet. The HBF and ABF significantly increased high-density lipoprotein cholesterol (HDL-C), decreased triglyceride (TG) and total cholesterol (TC) levels, and also tended to attenuate glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels in the bloodstream of the rats compared to CON. As compared to CON, lauric, myristic, and palmitic acids were significantly lower, and those of OA and α-linolenic acid (ALA) were significantly higher in the adipose tissues of HBF and ABF-fed groups. The HBF and ABF also reduced lipogenesis as induced by depleted fatty acid synthase (FAS) activity in rat adipose tissues. Nevertheless, between the two fats, HBF showed high feed intake due to its high palatability but reduced lipogenic enzyme activity, specifically that of FAS, and increased HDL-C, decreased TC and TG levels in the bloodstream, reduced saturated fatty acids (SFA), and increased oleic and ALA contents in rat adipose tissues indicating that HBF consumption does not pose significant risks of cardiovascular disease.

5.
Animals (Basel) ; 11(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374264

RESUMEN

The amaranth plants showed high potential feed value as forage for ruminants. An in-depth study of this plant, particularly in cattle, will help extend its utilization as an alternative protein and fiber feed source in cattle feeding. In this study, the nutrient compositions of three different species of amaranth, Amaranthus caudatus L., Amaranthus cruentus L., and Amaranthus hypochondriacus L.-two varieties for each species, A.ca 74, A.ca 91, A.cu 62, A.cu 66, A. hy 30, and A. hy 48-were evaluated. The in vitro technique was used to evaluate the fermentation characteristics such as total gas production, total volatile fatty acids (VFA) concentration, pH, and ammonia concentration of the rumen fluid. Moreover, the effective degradabilities of dry matter (EDDM) and crude protein (EDCP) of the amaranth forages were determined through in situ bag technique. The amaranth forages: A. caudatus, A. cruentus, and A. hypochondriacus showed better nutritive value than the locally produced forages in Chungcheong province of Korea. The CP of the amaranth ranged from 11.95% to 14.19%, and the neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents ranged from 45.53% to 70.88% and 34.17% to 49.83%, respectively. Among the amaranth varieties, A. hypochondriacus 48 showed the most excellent ruminant feed nutrient quality (CP, 14.19%; NDF, 45.53%; and ADF, 34.17%). The effective degradabilities of dry matter (EDDM; 33-56%) and crude protein EDCP (27-59%) of the amaranth were lower compared to other studies, which could be due to the maturity stage at which the forages were harvested. Nonetheless, A. hypochondriacus 48 showed the highest EDDM (56.73%) and EDCP (59.09%). The different amaranth species did not differ greatly in terms of total VFA concentration or molar proportions, total gas production, or ammonia-N concentration. The high nutrient composition, and highly effective degradability of dry matter and crude protein, coupled with the favorable fermentation characteristics, suggest that the amaranth forages showed good to excellent feed quality for cattle.

6.
Food Sci Nutr ; 8(7): 3617-3625, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32724624

RESUMEN

This study was conducted to investigate the effect of dietary oleic acid in olive oil-supplemented diets on the blood lipid profile and fatty acid composition in blood plasma and adipose tissue of rats. A total of 60 Sprague Dawley rats with mean body weight of 249 g ± 3.04 g were equally divided into three diet groups: control (CON) contained 10% coconut oil, olive50 contained 5% coconut oil and 5% olive oil, and olive100 contained 10% olive oil. Oleic acid (OA) level was highest in olive100 followed by the olive50 and control. The final body weight (BW) of the rats was significantly affected by the intake of OA, in which rats fed olive100 had the lowest final BW, which signified that OA could be associated with weight loss. Olive oil intake significantly increased levels of the high-density lipoprotein cholesterol (HDL-C) and exhibited a potential attenuation effect on the glutamic-oxaloacetic transaminase and the glutamic-pyruvic transaminase, and a potential role in the reduction of triglycerides in the bloodstream of the animals. In terms of fatty acid composition, significantly high OA was observed in the blood plasma and adipose tissues of rats fed olive100. Omega-3 polyunsaturated fatty acids (PUFAs), such as linolenic (C18:3 n-3), eicosapentaenoic (C20:5 n-3), and docosahexaenoic (C22:6 n-3), and n-6 PUFA arachidonic (C20:4 n-6) were also significantly increased in the blood plasma of rats fed olive100. These findings suggest that the intake of dietary high OA may enhance the omega-3 fatty acid levels in the blood plasma of rats and may have a positive effect in reducing risks to cardiovascular disease, as evidenced by weight loss, increased HDL-C levels, and decreased TG levels in the blood plasma of experimental animals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...