Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39154335

RESUMEN

The development of CRISPR technologies provides a powerful tool for understanding the evolution and functionality of essential biological processes. Here we demonstrate successful CRISPR-Cas9 genome editing in the dioecious moss species, Ceratodon purpureus. Using an existing selection system from the distantly related hermaphroditic moss, Physcomitrium patens, we generated knock-outs of the APT reporter gene by employing CRISPR-targeted mutagenesis under expression of native U6 snRNA promoters. Next, we used the native homology-directed repair (HDR) pathway, combined with CRISPR-Cas9, to knock in two reporter genes under expression of an endogenous RPS5A promoter in a newly developed landing site in C. purpureus. Our results show that the molecular tools developed in P. patens can be extended to other mosses across this ecologically important and developmentally variable group. These findings pave the way for precise and powerful experiments aimed at identifying the genetic basis of key functional variation within the bryophytes and between the bryophytes and other land plants.

2.
EFSA J ; 22(8): e8886, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39099613

RESUMEN

Genetically modified maize MON 95275 was developed to confer protection to certain coleopteran species. These properties were achieved by introducing the mpp75Aa1.1, vpb4Da2 and DvSnf7 expression cassettes. The molecular characterisation data and bioinformatic analyses reveal similarity to known toxins, which was further assessed. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MON 95275 and its conventional counterpart needs further assessment. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Mpp75Aa1.1 and Vpb4Da2 proteins and the DvSnf7 dsRNA and derived siRNAs as expressed in maize MON 95275 and finds no evidence that the genetic modification would change the overall allergenicity of maize MON 95275. In the context of this application, the consumption of food and feed from maize MON 95275 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 95275 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of maize MON 95275 material into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 95275. The GMO Panel concludes that maize MON 95275 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

3.
EFSA J ; 22(8): e8887, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39099615

RESUMEN

Genetically modified (GM) maize DP910521 was developed to confer resistance against certain lepidopteran insect pests as well as tolerance to glufosinate herbicide; these properties were achieved by introducing the mo-pat, pmi and cry1B.34 expression cassettes. The molecular characterisation data and bioinformatic analyses did not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP910521 and its conventional counterpart needs further assessment except for the levels of iron in grain, which do not raise safety and nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Cry1B.34, PAT and PMI proteins as expressed in maize DP910521. The GMO panel finds no evidence that the genetic modification impacts the overall safety of maize DP910521. In the context of this application, the consumption of food and feed from maize DP910521 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize DP910521 is as safe as its conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of maize DP910521 material into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP910521. The GMO Panel concludes that maize DP910521 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

4.
EFSA J ; 22(7): e8895, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39040572

RESUMEN

EFSA was requested by the European Commission (in accordance with Article 29 of Regulation (EC) No 178/2002) to provide a scientific opinion on the application of new developments in biotechnology (new genomic techniques, NGTs) to viable microorganisms and products of category 4 to be released into the environment or placed on the market as or in food and feed, and to non-viable products of category 3 to be placed on the market as or in food and feed. A horizon scanning exercise identified a variety of products containing microorganisms obtained with NGTs (NGT-Ms), falling within the remit of EFSA, that are expected to be placed on the (EU) market in the next 10 years. No novel potential hazards/risks from NGT-Ms were identified as compared to those obtained by established genomic techniques (EGTs), or by conventional mutagenesis. Due to the higher efficiency, specificity and predictability of NGTs, the hazards related to the changes in the genome are likely to be less frequent in NGT-Ms than those modified by EGTs and conventional mutagenesis. It is concluded that EFSA guidances are 'partially applicable', therefore on a case-by-case basis for specific NGT-Ms, fewer requirements may be needed. Some of the EFSA guidances are 'not sufficient' and updates are recommended. Because possible hazards relate to genotypic and phenotypic changes introduced and not to the method used for the modification, it is recommended that any new guidance should take a consistent risk assessment approach for strains/products derived from or produced with microorganisms obtained with conventional mutagenesis, EGTs or NGTs.

5.
EFSA J ; 22(7): e8894, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38993591

RESUMEN

EFSA was asked by the European Parliament to provide a scientific opinion on the analysis by the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) of Annex I of the European Commission proposal for a regulation 'on plants obtained by certain new genomic techniques (NGTs) and their food and feed, and amending regulation (EU) 2017/625'. The Panel on genetically modified organisms (GMO) assessed the opinion published by ANSES, which focuses on (i) the need to clarify the definitions and scope, (ii) the scientific basis for the equivalence criteria and (iii) the need to take potential risks from category 1 NGT plants into account. The EFSA GMO Panel considered the ANSES analysis and comments on various terms used in the criteria in Annex I of the European Commission proposal and discussed definitions based on previous EFSA GMO Panel opinions. The EFSA GMO Panel concluded that the available scientific literature shows that plants containing the types and numbers of genetic modifications used as criteria to identify category 1 NGT plants in the European Commission proposal do exist as the result of spontaneous mutations or random mutagenesis. Therefore, it is scientifically justified to consider category 1 NGT plants as equivalent to conventionally bred plants with respect to the similarity of genetic modifications and the similarity of potential risks. The EFSA GMO Panel did not identify any additional hazards and risks associated with the use of NGTs compared to conventional breeding techniques in its previous Opinions.

6.
Transgenic Res ; 33(1-2): 67-74, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573428

RESUMEN

Genome editing via CRISPR/Cas has enabled targeted genetic modifications in various species, including plants. The requirement for specific protospacer-adjacent motifs (PAMs) near the target gene, as seen with Cas nucleases like SpCas9, limits its application. PAMless SpCas9 variants, designed with a relaxed PAM requirement, have widened targeting options. However, these so-call PAMless SpCas9 still show variation of editing efficiency depending on the PAM and their efficiency lags behind the native SpCas9. Here we assess the potential of a PAMless SpCas9 variant for genome editing in the model plant Physcomitrium patens. For this purpose, we developed a SpRYCas9i variant, where expression was optimized, and tested its editing efficiency using the APT as a reporter gene. We show that the near PAMless SpRYCas9i effectively recognizes specific PAMs in P. patens that are not or poorly recognized by the native SpCas9. Pattern of mutations found using the SpRYCas9i are similar to the ones found with the SpCas9 and we could not detect off-target activity for the sgRNAs tested in this study. These findings contribute to advancing versatile genome editing techniques in plants.


Asunto(s)
Bryopsida , Edición Génica , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Mutación , Bryopsida/genética , Genoma de Planta/genética
7.
EFSA J ; 22(4): e8715, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38686342

RESUMEN

Following the joint submission of dossier GMFF-2022-9170 under Regulation (EC) No 1829/2003 from Bayer Agriculture B.V. and Corteva Agriscience Belgium B.V., the Panel on genetically modified organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide tolerant and insect resistant genetically modified maize MON 89034 × 1507 × MON 88017 × 59122 and 8 out of 10 of its subcombinations, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, an evaluation of the literature retrieved by a scoping review, a search for additional studies performed by or on behalf of the applicant and updated bioinformatics analyses. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in maize MON 89034 × 1507 × MON 88017 × 59122 and 8 out of 10 of its subcombinations considered for renewal are identical to the sequences of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal dossier GMFF-2022-9170 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 89034 × 1507 × MON 88017 × 59122 and 8 out of 10 of its subcombinations.

8.
EFSA J ; 22(4): e8716, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38681739

RESUMEN

Following the submission of dossier GMFF-2022-3670 under Regulation (EC) No 1829/2003 from Corteva Agriscience Belgium BV and Bayer Agriculture BV, the Panel on genetically modified organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide-tolerant and insect-resistant genetically modified maize MON 89034 × 1507 × NK603, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and a search for additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in maize MON 89034 × 1507 × NK603 considered for renewal are identical to the sequences of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal dossier GMFF-2022-3670 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 89034 × 1507 × NK603.

9.
EFSA J ; 22(4): e8714, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38681741

RESUMEN

Genetically modified (GM) maize MON 94804 was developed to achieve a reduction in plant height by introducing the GA20ox_SUP suppression cassette. The molecular characterisation and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the agronomic/phenotypic and compositional differences identified between maize MON 94804 and its conventional counterpart needs further assessment, except for ear height, plant height and levels of carbohydrates in forage, which do not raise safety or nutritional concerns. The Panel on Genetically Modified Organisms (GMO Panel) does not identify safety concerns regarding the toxicity and allergenicity of the GA20ox_SUP precursor-miRNA and derived mature miRNA as expressed in maize MON 94804 and finds no evidence that the genetic modification would change the overall allergenicity of maize MON 94804. In the context of this application, the consumption of food and feed from maize MON 94804 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 94804 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 94804 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 94804. The GMO Panel concludes that maize MON 94804 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

10.
EFSA J ; 22(3): e8655, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38510324

RESUMEN

Genetically modified maize DP202216 was developed to confer tolerance to glufosinate-ammonium-containing herbicides and to provide an opportunity for yield enhancement under field conditions. These properties were achieved by introducing the mo-pat and zmm28 expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP202216 and its comparator needs further assessment, except for the levels of stearic acid (C18:0), which do not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the PAT and ZMM28 proteins as expressed in maize DP202216, and finds no evidence that the genetic modification would change the overall allergenicity of maize DP202216. In the context of this application, the consumption of food and feed from maize DP202216 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize DP202216 is as safe as the comparator and non-GM reference varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP202216 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP202216. The GMO Panel concludes that maize DP202216 is as safe as its comparator and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.

11.
iScience ; 27(3): 109159, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405612

RESUMEN

Meeting the challenges of agroecological transition in a context of climate change requires the use of various strategies such as biological regulations, adapted animal and plant genotypes, diversified production systems, and digital technologies. Seeds and plants, through plant breeding, play a crucial role in driving these changes. The emergence of genome editing presents a new opportunity in plant breeding practices. However, like any technological revolution involving living organisms, it is essential to assess its potential contributions, limits, risks, socio-economic implications, and the associated controversies. This article aims to provide a comprehensive review of scientific knowledge on genome editing for agroecological transition, drawing on multidisciplinary approaches encompassing biological, agronomic, economic, and social sciences.

12.
EFSA J ; 22(1): e8489, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38250501

RESUMEN

Following the submission of dossier GMFF-2022-9450 under Regulation (EC) No 1829/2003 from Bayer Agriculture BV, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect protected genetically modified maize MON 810, for food and feed uses (including pollen), excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, an evaluation of the literature retrieved by a scoping review, additional studies performed by or on behalf of the applicant and updated bioinformatics analyses. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in maize MON 810 considered for renewal is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in dossier GMFF-2022-9450 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 810.

13.
EFSA J ; 22(1): e8490, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38235311

RESUMEN

Genetically modified maize DP915635 was developed to confer tolerance to glufosinate herbicide and resistance to corn rootworm pests. These properties were achieved by introducing the ipd079Ea, mo-pat and pmi expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP915635 and its conventional counterpart needs further assessment, except for the levels of crude protein in forage, which does not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the IPD079Ea, PAT and PMI proteins expressed in maize DP915635. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize DP915635. In the context of this application, the consumption of food and feed from maize DP915635 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize DP915635 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP915635 grains into the environment, this would not raise environmental safety concerns. The post market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP915635. The GMO Panel concludes that maize DP915635 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

14.
EFSA J ; 22(1): e8483, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38239495

RESUMEN

Genetically modified maize DP23211 was developed to confer control of certain coleopteran pests and tolerance to glufosinate-containing herbicide. These properties were achieved by introducing the pmi, mo-pat, ipd072Aa and DvSSJ1 expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP23211 and its conventional counterpart needs further assessment, except for those in levels of histidine, phenylalanine, magnesium, phosphorus and folic acid in grain, which do not raise safety and nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the IPD072Aa, PAT and PMI proteins and the DvSSJ1 dsRNA and derived siRNAs newly expressed in maize DP23211, and finds no evidence that the genetic modification impacts the overall safety of maize DP23211. In the context of this application, the consumption of food and feed from maize DP23211 does not represent a nutritional concern in humans and animals. Therefore, no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP23211 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP23211. The GMO Panel concludes that maize DP23211 is as safe as its conventional counterpart and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.

15.
J Exp Bot ; 75(7): 2100-2112, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069501

RESUMEN

Downy mildew of grapevine (Vitis vinifera), caused by the oomycete Plasmopara viticola, is an important disease that is present in cultivation areas worldwide, and using resistant varieties provides an environmentally friendly alternative to fungicides. DOWNY MILDEW RESISTANT 6 (DMR6) from Arabidopsis is a negative regulator of plant immunity and its loss of function confers resistance to downy mildew. In grapevine, DMR6 is present in two copies, named VvDMR6-1 and VvDMR6-2. Here, we describe the editing of VvDMR6-1 in embryogenic calli using CRISPR/Cas9 and the regeneration of the edited plants. All edited plants were found to be biallelic and chimeric, and whilst they all showed reduced growth compared with non-transformed control plants, they also had reduced susceptibility to P. viticola. Comparison between mock-inoculated genotypes showed that all edited lines presented higher levels of salicylic acid than controls, and lines subjected to transformation presented higher levels of cis-resveratrol than controls. Our results identify VvDMR6-1 as a promising target for breeding grapevine cultivars with improved resistance to downy mildew.


Asunto(s)
Oomicetos , Vitis , Resistencia a la Enfermedad/genética , Sistemas CRISPR-Cas , Fitomejoramiento , Vitis/genética , Enfermedades de las Plantas
16.
17.
EFSA J ; 21(6): e08031, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37377664

RESUMEN

Genetically modified cotton COT102 was developed to confer resistance against several lepidopteran species. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the differences in the agronomic-phenotypic and compositional characteristics between cotton COT102 and its non-GM comparator needs further assessment, except for levels of acid detergent fibre, which do not raise safety or nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Vip3Aa19 and APH4 proteins as expressed in cotton COT102 and finds no evidence that the genetic modification would change the overall allergenicity of cotton COT102. In the context of this application, the consumption of food and feed from cotton COT102 does not represent a nutritional concern for humans and animals. The GMO Panel concludes that cotton COT102 is as safe as the non-GM comparator and non-GM cotton varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable cotton COT102 seeds into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of cotton COT102. The GMO Panel concludes that cotton COT102 is as safe as its non-GM comparator and the tested non-GM cotton varieties with respect to potential effects on human and animal health and the environment.

18.
EFSA J ; 21(6): e08011, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37284025

RESUMEN

Genetically modified maize Bt11 × MIR162 × MIR604 × MON 89034 × 5307 × GA21 was developed by crossing to combine six single events: Bt11, MIR162, MIR604, MON 89034, 5307 and GA21, the GMO Panel previously assessed the 6 single maize events and 27 out of the 56 possible subcombinations and did not identify safety concerns. No new data on the single maize events or the assessed subcombinations were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the six-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that six-event stack maize, as described in this application, is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable six-event stack maize grains into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in 29 of the maize subcombinations not previously assessed and covered by the scope of this application and concludes that these are expected to be as safe as the single events, the previously assessed subcombinations and the six-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize Bt11 × MIR162 × MIR604 × MON 89034 × 5307 × GA21. The GMO Panel concludes that six-event stack maize and the 30 subcombinations covered by the scope of the application are as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

19.
J Exp Bot ; 74(19): 6176-6187, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37243510

RESUMEN

Efficient and precise gene editing is the gold standard of any reverse genetic study. The recently developed prime editing approach, a modified CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein] editing method, has reached the precision goal but its editing rate can be improved. We present an improved methodology that allows for routine prime editing in the model plant Physcomitrium patens, whilst exploring potential new prime editing improvements. Using a standardized protoplast transfection procedure, multiple prime editing guide RNA (pegRNA) structural and prime editor variants were evaluated targeting the APT reporter gene through direct plant selection. Together, enhancements of expression of the prime editor, modifications of the 3' extension of the pegRNA, and the addition of synonymous mutation in the reverse transcriptase template sequence of the pegRNA dramatically improve the editing rate without affecting the quality of the edits. Furthermore, we show that prime editing is amenable to edit a gene of interest through indirect selection, as demonstrated by the generation of a Ppdek10 mutant. Additionally, we determine that a plant retrotransposon reverse transcriptase enables prime editing. Finally, we show for the first time the possibility of performing prime editing with two independently coded peptides.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , ADN Polimerasa Dirigida por ARN
20.
EFSA J ; 21(4): e07934, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37122285

RESUMEN

Following the submission of application EFSA-GMO-RX-024 under Regulation (EC) No 1829/2003 from BASF Agricultural Solutions Seed US LLC, the Panel on Genetically Modified Organisms of EFSA was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide tolerant genetically modified oilseed rape MS8, RF3 and MS8 × RF3, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in oilseed rape MS8, RF3 and MS8 × RF3 considered for renewal are identical to the sequences of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-024 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on oilseed rape MS8, RF3 and MS8 × RF3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...