Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Metabolism ; 151: 155746, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38016540

RESUMEN

BACKGROUND: Multinucleation is a hallmark of osteoclast formation and has a unique ability to resorb bone matrix. During osteoclast differentiation, the cytoskeleton reorganization results in the generation of actin belts and eventual bone resorption. Tetraspanins are involved in adhesion, migration and fusion in various cells. However, its function in osteoclast is still unclear. In this study, we identified Tm4sf19, a member of the tetraspanin family, as a regulator of osteoclast function. MATERIALS AND METHODS: We investigate the effect of Tm4sf19 deficiency on osteoclast differentiation using bone marrow-derived macrophages obtained from wild type (WT), Tm4sf19 knockout (KO) and Tm4sf19 LELΔ mice lacking the large extracellular loop (LEL). We analyzed bone mass of young and aged WT, KO and LELΔ mice by µCT analysis. The effects of Tm4sf19 LEL-Fc fusion protein were accessed in osteoclast differentiation and osteoporosis animal model. RESULTS: We found that deficiency of Tm4sf19 inhibited osteoclast function and LEL of Tm4sf19 was responsible for its function in osteoclasts in vitro. KO and LELΔ mice exhibited higher trabecular bone mass compared to WT mice. We found that Tm4sf19 interacts with integrin αvß3 through LEL, and that this binding is important for cytoskeletal rearrangements in osteoclast by regulating signaling downstream of integrin αvß3. Treatment with LEL-Fc fusion protein inhibited osteoclast function in vitro and administration of LEL-Fc prevented bone loss in an osteoporosis mouse model in vivo. CONCLUSION: We suggest that Tm4sf19 regulates osteoclast function and that LEL-Fc may be a promising drug to target bone destructive diseases caused by osteoclast hyper-differentiation.


Asunto(s)
Enfermedades Óseas , Resorción Ósea , Osteoporosis , Tetraspaninas , Animales , Ratones , Resorción Ósea/genética , Resorción Ósea/metabolismo , Diferenciación Celular , Integrina alfaVbeta3/metabolismo , Osteoclastos , Osteoporosis/genética , Osteoporosis/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo
2.
PLoS One ; 7(10): e48315, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23118980

RESUMEN

Similar to ubiquitin, regulatory roles for NEDD8 (neural precursor cell-expressed developmentally down-regulated 8) are being clarified during cell growth, signal transduction, immune response, and development. However, NEDD8 targets and their functional alterations are not well known. Regulator of calcineurin 1 (RCAN1/DSCR1P1) is located near the Down syndrome critical region on the distal part of chromosome 21, and its gene product is an endogenous inhibitor of calcineurin signaling. RCAN1 is modified by ubiquitin and consequently undergoes proteasomal degradation. Here we report that NEDD8 is conjugated to RCAN1 (RCAN1-1S) via three lysine residues, K96, K104, and K107. Neddylation enhances RCAN1 protein stability without affecting its cellular location. In addition, we found that neddylation significantly inhibits proteasomal degradation of RCAN1, which may underlie the ability of NEDD8 to enhance RCAN1 stability. Furthermore, neddylation increases RCAN1 binding to calcineurin, which potentiates its inhibitory activity toward downstream NFAT signaling. The present study provides a new regulatory mechanism of RCAN1 function and highlights an important role for diverse RCAN1-involved cellular physiology.


Asunto(s)
Inhibidores de la Calcineurina , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Ubiquitinas/metabolismo , Animales , Sitios de Unión , Células COS , Calcineurina/metabolismo , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citosol/metabolismo , Proteínas de Unión al ADN , Células HEK293 , Humanos , Ratones , Proteína NEDD8 , Factores de Transcripción NFATC/metabolismo , Unión Proteica , Estabilidad Proteica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA